Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 2.989 IF 2.989
  • IF 5-year<br/> value: 3.489 IF 5-year
    3.489
  • CiteScore<br/> value: 3.37 CiteScore
    3.37
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
Atmos. Meas. Tech., 10, 1335-1357, 2017
http://www.atmos-meas-tech.net/10/1335/2017/
doi:10.5194/amt-10-1335-2017
© Author(s) 2017. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
06 Apr 2017
Solid hydrometeor classification and riming degree estimation from pictures collected with a Multi-Angle Snowflake Camera
Christophe Praz1, Yves-Alain Roulet2, and Alexis Berne1 1Environmental Remote Sensing Laboratory (LTE), École polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
2Federal Office of Meteorology and Climatology MeteoSwiss, Payerne, Switzerland
Abstract. A new method to automatically classify solid hydrometeors based on Multi-Angle Snowflake Camera (MASC) images is presented. For each individual image, the method relies on the calculation of a set of geometric and texture-based descriptors to simultaneously identify the hydrometeor type (among six predefined classes), estimate the degree of riming and detect melting snow. The classification tasks are achieved by means of a regularized multinomial logistic regression (MLR) model trained over more than 3000 MASC images manually labeled by visual inspection. In a second step, the probabilistic information provided by the MLR is weighed on the three stereoscopic views of the MASC in order to assign a unique label to each hydrometeor. The accuracy and robustness of the proposed algorithm is evaluated on data collected in the Swiss Alps and in Antarctica. The algorithm achieves high performance, with a hydrometeor-type classification accuracy and Heidke skill score of 95 % and 0.93, respectively. The degree of riming is evaluated by introducing a riming index ranging between zero (no riming) and one (graupel) and characterized by a probable error of 5.5 %. A validation study is conducted through a comparison with an existing classification method based on two-dimensional video disdrometer (2DVD) data and shows that the two methods are consistent.

Citation: Praz, C., Roulet, Y.-A., and Berne, A.: Solid hydrometeor classification and riming degree estimation from pictures collected with a Multi-Angle Snowflake Camera, Atmos. Meas. Tech., 10, 1335-1357, doi:10.5194/amt-10-1335-2017, 2017.
Publications Copernicus
Download
Short summary
The Multi-Angle Snowflake Camera (MASC) provides high-resolution pictures of individual falling snowflakes and ice crystals. A method is proposed to automatically classify these pictures into six classes of snowflakes as well to estimate the degree of riming and to detect whether or not the particles are melting. Multinomial logistic regression is used with a manually classified reference set. The evaluation demonstrates the good and reliable performance of the proposed technique.
The Multi-Angle Snowflake Camera (MASC) provides high-resolution pictures of individual falling...
Share