Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 2.989 IF 2.989
  • IF 5-year<br/> value: 3.489 IF 5-year
    3.489
  • CiteScore<br/> value: 3.37 CiteScore
    3.37
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
Atmos. Meas. Tech., 4, 909-922, 2011
http://www.atmos-meas-tech.net/4/909/2011/
doi:10.5194/amt-4-909-2011
© Author(s) 2011. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
20 May 2011
Atmospheric correction of thermal-infrared imagery of the 3-D urban environment acquired in oblique viewing geometry
F. Meier1, D. Scherer1, J. Richters2, and A. Christen3 1Technische Universität Berlin, Department of Ecology, Chair of Climatology, Rothenburgstraße 12, 12165 Berlin, Germany
2Lohmeyer Consulting Engineers GmbH & Co. KG, Karlsruhe, Germany
3University of British Columbia, Department of Geography & Atmospheric Science Program, Vancouver, Canada
Abstract. This research quantifies and discusses atmospheric effects, which alter the radiance observed by a ground-based thermal-infrared (TIR) camera. The TIR camera is mounted on a boom at a height of 125 m above ground on top of a high-rise building in the city of Berlin, Germany (52.4556° N, 13.3200° E) and observes the Earth's surface. The study shows that atmospheric correction of TIR imagery of the three-dimensional (3-D) urban environment acquired in oblique viewing geometry has to account for spatial variability of line-of-sight (LOS) geometry. We present an atmospheric correction procedure that uses these spatially distributed LOS geometry parameters, the radiative transfer model MODTRANTM5.2 and atmospheric profile data derived from meteorological measurements in the field of view (FOV) of the TIR camera. The magnitude of atmospheric effects varies during the analysed 24-hourly period (6 August 2009) and is particularly noticeable for surfaces showing a strong surface-to-air temperature difference. The differences between uncorrected and corrected TIR imagery reach up to 6.7 K at 12:00. The use of non-spatially distributed LOS parameters leads to errors of up to 3.7 K at 12:00 and up to 0.5 K at 24:00.

Citation: Meier, F., Scherer, D., Richters, J., and Christen, A.: Atmospheric correction of thermal-infrared imagery of the 3-D urban environment acquired in oblique viewing geometry, Atmos. Meas. Tech., 4, 909-922, doi:10.5194/amt-4-909-2011, 2011.
Publications Copernicus
Download
Share