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Abstract. In situ measurements of atmospheric ozone (O3)
are performed routinely from many research aircraft plat-
forms. The most common technique depends on the strong
absorption of ultraviolet (UV) light by ozone. As atmo-
spheric science advances to the widespread use of unmanned
aircraft systems (UASs), there is an increasing requirement
for minimizing instrument space, weight, and power while
maintaining instrument accuracy, precision and time re-
sponse. The design and use of a new, dual-beam, UV pho-
tometer instrument for in situ O3 measurements is described.
A polarization optical-isolator configuration is utilized to
fold the UV beam inside the absorption cells, yielding a 60-
cm absorption length with a 30-cm cell. The instrument has a
fast sampling rate (2 Hz at< 200 hPa, 1 Hz at 200–500 hPa,
and 0.5 Hz at≥ 500 hPa), high accuracy (3 % excluding op-
eration in the 300–450 hPa range, where the accuracy may be
degraded to about 5 %), and excellent precision (1.1× 1010

O3 molecules cm−3 at 2 Hz, which corresponds to 3.0 ppb at
200 K and 100 hPa, or 0.41 ppb at 273 K and 1013 hPa). The
size (36 l), weight (18 kg), and power (50–200 W) make the
instrument suitable for many UASs and other airborne plat-
forms. Inlet and exhaust configurations are also described for
ambient sampling in the troposphere and lower stratosphere
(1000–50 hPa) that control the sample flow rate to maxi-
mize time response while minimizing loss of precision due
to induced turbulence in the sample cell. In-flight and labo-
ratory intercomparisons with existing O3 instruments show
that measurement accuracy is maintained in flight.

1 Introduction

Ozone is a key atmospheric trace gas that is produced and
transported in both the troposphere and stratosphere and is
present in mixing ratios ranging from parts per billion to parts
per million. Ozone in the stratosphere protects the biosphere
from harmful UV radiation from the sun and ozone in the free
troposphere plays a major role in atmospheric oxidation. In
the lower troposphere, ozone is a pollutant that is harmful to
plants and ecosystems (e.g. Ashmore, 2005) and has negative
impacts on human health (e.g. Mudway and Kelly, 2000).

A number of different techniques are commonly used for
in situ O3 measurements in environmental research, includ-
ing UV absorption (e.g. Bowman and Horak, 1974; Maier
et al., 1978; Proffitt and McLaughlin, 1983), chemilumines-
cence (e.g. Regener, 1964; Aimedieu and Barat, 1981; Rid-
ley et al., 1992), and electrochemistry (e.g. Brewer and Mil-
ford, 1960; Komhyr, 1969). Other techniques include pho-
toacoustic (Veres et al., 2005) and chemical conversion plus
cavity ring-down spectroscopy (Washenfelder et al., 2011).
UV absorption is often chosen because of its absolute na-
ture, overall simplicity, and reliability. Of particular merit is
the lack of consumables required during operation, which
makes UV absorption very suitable for continuous moni-
toring and long-endurance flights. A large number of UV
O3 photometers have been developed and reported for air-
borne measurement of O3 including those described by Prof-
fitt and McLaughlin (1983), Bognar and Birks (1996), Ross
et al. (2000), Price et al. (2003), Mao et al. (2006), Bren-
ninkmeijer et al. (2007), and Kalnajs and Avallone (2010).
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Ground level ozone concentrations are routinely monitored
at sites worldwide using UV photometers.

In situ measurements of ozone are frequently made from
airborne platforms, such as aircraft and balloons, in order
to describe the ambient photochemical environment and the
photochemical and dynamical history of sampled air. Obser-
vation of changes in ozone mixing ratio related to small-scale
atmospheric structures, such as power plant and biomass
burning plumes, convection, mixing of air parcels of dif-
ferent origins, and fine structure of stratospheric intrusions
into the troposphere, requires measurements at high spatial
resolution. With an aircraft as a measurement platform, spa-
tial resolution is limited by instrument sampling rate. At the
speeds of the jet-powered aircraft typically used for upper
troposphere and lower stratosphere (UT/LS) studies, a mea-
surement rate of 1 Hz corresponds to a horizontal spatial res-
olution of 100–200 m. Vertical fluxes can be estimated us-
ing aircraft profiling measurements (Kort et al., 2012). Since
the vertical gradients of atmospheric constituents cascade
to scales less than 10 m (Lovejoy et al., 2007) and the as-
cent and descent rates of jet-powered research aircraft are on
the order of 10 m s−1, sampling rates of 1 Hz or faster are
highly desired. Many of the commercially available ozone
photometers have measurement time constants ranging from
several to 10 s of seconds, limiting the scale of phenomena
that can be studied. Increasing the time resolution of mea-
surements generally requires increasing some combination
of instrument size, weight, and power consumption, which is
undesirable given the constraints on aircraft payloads. Fur-
thermore, with the expanding availability and use of un-
manned aircraft system (UAS) platforms in atmospheric re-
search, there is an increased need for airborne instruments
that are lighter, smaller, and require less power to operate,
while maintaining the performance specifications of larger
contemporary instruments.

We describe a new ozone UV photometer, designated here
as NOAA-2 O3, specifically built for use on high- and low-
altitude research aircraft. The new photometer was success-
fully operated on board two research aircraft, the NASA
Global Hawk UAS and the NASA WB-57F high-altitude
aircraft. The new instrument represents an example of how
size, weight, and power can be reduced without loss of in-
strument performance. The following sections describe the
instrument and sampling inlet designs along with perfor-
mance results from laboratory and flight testing. The instru-
ment performance tests include intercomparisons with a pre-
viously built NOAA ozone instrument, described by Proffitt
and McLaughlin (1983) and designated here as NOAA-1 O3.
This instrument has flown on hundreds of flights on board
the NASA ER-2 and other high-altitude research aircraft
since 1985.
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Fig. 1. Schematic of the new NOAA-2 O3 instrument showing the
configuration of the key optical and air flow components: Ln: lens;
F: UV filter; PBSn: polarizing beam splitter; BS: polka-dot 50-50
beam splitter; Mn: mirror; WPn: quarter-wave plate; PDn: silicon
photodiode detector; V1 and V2: synchronized 3-way flow-control
valves; V3: flow-control valve. Schematic is not to scale. The legend
indicates how the polarizations of the UV beams, and scrubbed and
unscrubbed sample air are illustrated.

2 Instrument description

2.1 General description

The NOAA-2 O3 photometer design illustrated in Fig. 1
is a derivative of the dual-beam, unpolarized, UV absorp-
tion technique described by Proffitt and McLaughlin (1983).
Briefly, ambient and O3-scrubbed airflows are alternately di-
rected into two identical absorption cells. 253.7-nm UV light
from a mercury lamp is split into two beams that are each
directed into one of the absorption cells. Since O3 strongly
absorbs photons at 253.7 nm, the UV beam passing through
the cell containing ambient ozone is attenuated more than
the beam passing through the cell containing O3-scrubbed
air. Knowing the O3 absorption cross section (σ) and the ab-
sorption path length (L), the O3 partial pressure (pO3) can be
derived using Beer’s law. For a given optical system, the in-
strument precision generally improves with increasingL. For
photometers designed for airborne measurements,L is typ-
ically 40 cm or less, and is limited in part by the allowable
instrument overall dimensions.

2.2 Optical configuration

In the new photometer design, a novel optical system was
developed (see Fig. 1) that folds the UV beam inside the
absorption cells and, thereby, doubles the absorption path
length for a given physical cell length. A polarization optical-
isolator configuration is utilized to fold the UV beam inside
the 1.6 cm ID Teflon-lined aluminum absorption cells, yield-
ing a 60-cm absorption length within the 30-cm long cells. In
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Fig. 2. A photo of the NOAA-2 O3 instrument without its enclo-
sure showing(a): fans;(b): heaters;(c): catalytic scrubber;(d): flow
control valve (V3);(e): sample flow sensor;(f): sample line;(g): ex-
haust line.

this configuration, the unpolarized output of a mercury lamp
(see Sect. 2.3) is collimated by a lens and passes through
a 254-nm bandpass filter before being vertically polarized
by a polarizing beam splitter (PBS1). The resulting polar-
ized beam is then split into two beams using a non-polarizing
polka-dot beam splitter (BS) and mirror (M1) combination,
with half of the light entering each of two absorption cells
unimpeded through a polarizing beam splitter (PBS2 and
PBS3, respectively). On the distal end of each cell, the light
is reflected and the polarization rotated by 90◦ using a pre-
cision quarter-wave plate and mirror combination (WP1, M2
and WP2, M3). After the return pass through the absorption
cells, the now horizontally polarized light is reflected upward
into a silicon photodiode by entrance polarizing beam split-
ter (PBS2 and PBS3). The optical path length in the NOAA-1
O3 instrument is the physical cell length of 40 cm.

A reduced cell length reduces the required physical size of
the instrument for a given precision. In addition, the shorter
cell of this double-pass design has the advantage of a shorter
sample-air residence time inside the cells, which increases
the allowable sampling rate for a given sample flow. Further-
more, the folded optical path allows an optimally compact
design by locating all the significant optical and electronic
components on only one end of the cell. The new instrument
specifications are listed in Table 1. A photo of the instrument
without its flight enclosure is shown in Fig. 2.

2.3 UV lamp

The NOAA-1 O3 instrument uses a Pen-Ray mercury lamp
(UVP, LLC Upland, CA). In the NOAA-2 O3 instrument,
linearly polarizing the UV beam from the lamp reduces by
one half the UV flux available in each absorption cell. As a
consequence of the use of polarized beams and an increase

in L (60 cm vs. 40 cm), the Pen-Ray lamp does not provide
sufficient photon flux to achieve a similar detection limit.
Instead, the new instrument uses a capillary mercury lamp
(Jelight Company, Inc., Irvine, CA, Part No. 3CPG-1). An
aperture (d ∼ 0.5 mm) blocks stray light, creating an effec-
tive UV point source. With a custom power supply, this lamp
consumes approximately 6 W of power and provides a use-
able photon flux over 1 order of magnitude greater than the
Pen-Ray lamp.

2.4 Sample flow control

The NOAA-2 O3 instrument does not use active pumping
to pull sample air through the absorption cells. Instead, ram
pressure (about 20–40 hPa) at the sampling inlet opening
created by the aircraft movement at 100–200 m s−1 pushes
ambient air through the instrument from the inlet opening
to the exhaust opening. As shown in Fig. 1, the inlet flow
is split with half passing through an O3 scrubber unit and
half remaining unscrubbed. Three-way valves (V1 and V2)
serve to alternate the scrubbed and unscrubbed flows in each
absorption cell every 10 s.

The flows exiting the absorption cells are merged into a
common exhaust line. A volumetric flow meter (Pneumota-
chograph Type 0, Phipps and Bird Fleisch, Richmond, VA) is
used for measuring the total merged flow downstream of the
absorption cells. Flow regulation is achieved using a custom
butterfly vane valve (V3) with an ID of 9.53 mm based on the
design by Gao et al. (1999)

For an instrument with an emphasis on high precision and
fast time response, careful flow control is very important.
Sufficient flow is needed to ensure the time required to com-
pletely flush the absorption cell volume is the same or shorter
than the time between successive reported measurement in-
tervals. Otherwise, the time resolution of the instrument will
be less than the reported measurement interval. On the other
hand, if the sample flow is too fast, excessive air turbulence
may cause noise in the optical detector signals, thereby de-
grading the instrument precision. The challenge is to design
a sample flow system that avoids these two issues for the de-
sired measurement interval.

The effective flushing period is determined by the time re-
quired to interchange the scrubbed and unscrubbed flows be-
tween absorption cells. With an internal cell volume of about
84 cm3, the total volume between the 3-way flow switching
valves (V1 and V2) and the cell exhaust points is approxi-
mately 190 cm3. Assuming plug flow, the minimum volume
flow rate for a flush time of 0.5 s is about 22 liters per minute
(LPM). In practice, a 27 LPM flow rate is needed to ensure a
0.5 s flush rate needed for true 2 Hz measurements. One data
point immediately after the valves V1 and V2 switch is dis-
carded (Proffitt and McLaughlin, 1983). The sampling rate
of 2 Hz of the NOAA-2 O3 corresponds to a horizontal reso-
lution of 100–200 m and a vertical resolution of 5 m or less,
respectively, at typical research speeds.

www.atmos-meas-tech.net/5/2201/2012/ Atmos. Meas. Tech., 5, 2201–2210, 2012
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Table 1.Specifications of the NOAA O3 instruments.

Parameter New NOAA-2 O3 instrument NOAA-1 O3 instrument

Sampling rate 2 Hz 1 Hz
Accuracy 3 % 3 %
Precision with sample flow 1.1× 1010 O3 molecules cm−3 1.5× 1010 molecules cm−3

Size 48 cm× 34 cm× 22 cm 76 cm× 46 cm× 18 cm
Weight 18 kg 26 kg
Power (28 VDC) ∼ 200 W (peak)a; ∼ 50 W (normal) ∼ 200 W (peak)a; ∼ 50 W (normal)

a A large portion of power is used for achieving (peak) and maintaining (normal) an adequate internal temperature during an aircraft flight in
the UT/LS. The normal power consumption depends strongly on the instrument ambient temperature conditions.
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Fig. 3. Two types of NOAA-2 O3 inlets tested on board the NASA
WB-57F aircraft. Upper panel: side-facing inlet with a tubular
scoop. Lower panel: simple forward-facing inlet. Drawing is shown
to scale.

2.5 Sample inlets

Figure 3 shows two different passive inlet/exhaust configu-
rations used in flight tests of the new instrument. The inlet
configuration shown in the upper panel is a side-facing inlet
with a forward-facing tubular scoop that is a Teflon® -lined
tube with a 1.3-cm internal diameter (ID) inlet opening and
a smaller restricted exit opening (0.64-cm ID). The restric-
tion at the exit port raises air pressure inside the inlet tube
and pushes air into the side-facing sample line (Teflon® PFA
tubing, 0.95-cm OD, 0.64 cm ID). The lower panel shows a
simpler forward-facing inlet configuration made of stainless
steel (1.27-cm outside diameter (OD), 0.953-cm ID) lined

with a Teflon® PFA tubing (0.95-cm OD, 0.64-cm ID). Sam-
ple exhaust openings for both configurations are at the ends
of backward-facing stainless steel tubes (0.80-cm OD, 0.64-
cm ID stainless steel). Both configurations require mechan-
ical strength and rigidity to withstand drag stresses during
flight.

A passive inlet requires a forward-facing inlet opening to
realize ram pressure. In some cases, the exhaust opening can
also provide pumping to increase the pressure differential
across the instrument. The advantage of the configuration in
the top panel of Fig. 3 is that debris such as dirt, insects or
hydrometeors with sufficient inertia are prevented from turn-
ing the corner and entering the sample line to the instrument.
This keeps the instrument cell windows and walls clean, thus
maintaining instrument performance. The disadvantage of
this configuration is that it is more prone to cause turbulence
in the sample line that persists into the absorption cells. This
turbulence causes fluctuations in the index of refraction of
air in the cells, which scatters the UV light (Booker and Gor-
don, 1950; Munick, 1965) and leads to a slight degradation
of instrument precision.

2.6 Catalytic ozone scrubber

As shown in Fig. 1, the sample flow is split into two, and
one of the flows passes through the O3 scrubber unit be-
fore entering one of the absorption cells. The unit shown
in Fig. 4 was specifically designed and constructed to cat-
alytically destroy O3 in the flow, while not causing a sig-
nificant pressure drop compared a sample line of the same
length. A large pressure drop can lead to unbalanced flows
in the two absorption cells, and therefore degraded instru-
ment time resolution. As shown, the sample air stream enter-
ing the scrubber is expanded and slowed to increase reaction
time. Brass membranes containing a variety of holes are lo-
cated at the entrance and exit to ensure near plug flow of the
sample air inside the scrubber. Catalytic reactions occur on a
total of 20 manganese oxide screens, taken from commercial
catalysts (www.thermoscientific.com, Part #14697) that are
stacked uniformly in the middle of the scrubber volume. The
exposed screen diameter is 51 mm. The scrubber unit was
tested by passing air with 6 ppm O3 through it at 14 LPM

Atmos. Meas. Tech., 5, 2201–2210, 2012 www.atmos-meas-tech.net/5/2201/2012/
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Fig. 4. Cross-sectional view of the catalytic O3 scrubber (left) and
flow disperser (right). The exposed manganese oxide screen diame-
ter is 51 mm. The schematic is shown to scale.

at pressures down to 50 hPa. The output of the scrubber was
sampled with the NOAA-2 O3, which showed no measurable
O3 (< 0.5 ppb) for several hours of operation.

2.7 Temperature control

O3 artifacts can also be caused by temperature gradients
along or between the absorption cells. To ensure the best
performance, the entire volume of the instrument is tem-
perature controlled. As shown in Fig. 2, two 50-W heaters
are mounted on aluminum heat exchangers placed directly
in front of two of three circulation fans inside the instru-
ment flight enclosure (not shown). The circulation warms and
cools components to achieve a uniform operating tempera-
ture. Temperature controllers using sensors placed upstream
of the fans control enclosure air temperatures to 300± 1 K,
or ±0.3 %. A 1-mm thick aluminum enclosure serves as a
thermal barrier from ambient temperatures that vary depend-
ing on the location of the instrument. When the instrument
is used in unheated and unpressurized aircraft payload lo-
cations, a 3-mm thick Nomex insulation felt lines the in-
side surfaces of the enclosure as additional thermal insu-
lation. Sample air is heated before entering the absorption
cells as it flows through an 80-cm segment of Teflon® tub-
ing (11.4-mm OD) located inside the enclosure on top of
instrument in Fig. 2.

2.8 Cell pressure

Absorption cell pressure is needed to calculate the O3 mixing
ratio from O3 partial pressure. During a flight, the cell pres-
sure fluctuates in response to changes in ambient pressure.
An accurate measurement of the cell pressure is therefore
critical for accurate and precise O3 mixing ratio data. The
pressure sensor chosen must be independent of ambient pres-
sure in the payload location. An Esterline 78005001A (Es-
terline Advanced Sensors, Farnborough, England) vibrating-
cylinder pressure sensor was used based on its excellent sta-
bility, accuracy, precision, temperature compensation, and
the lack of sensitivity to ambient pressure changes. Frequent
intercomparisions with NOAA laboratory standards showed

that its measurements were stable and accurate over 2 yr to
approximately±0.5 hPa, or< ±1 %.

The difference in pressure between the two absorption
cells is small under flight conditions (< 0.1 hPa). Therefore,
only one pressure sensor is needed for cell pressure measure-
ments. A Setra Model 720 pressure sensor (Setra Systems,
Inc., Boxborough, MA) is used in parallel to the Esterline
pressure transducer as a backup sensor and to provide a di-
agnostic for stability of the primary pressure measurement.

2.9 Data system

A National Instruments CompactRIO controller (National
Instruments, Austin, TX) was used for instrument control,
data collection, and communication with the host aircraft.
A detailed description of the data system can be found at
http://sine.ni.com/cs/app/doc/p/id/cs-12343.

3 Instrument performance

The instrument performs well in the laboratory and in flight.
The optical system is very robust, unaffected by in-flight vi-
brations. No problems due to imperfect polarization or mis-
alignment were experienced. This is not unexpected since
imperfect polarization or misalignment only affect instru-
ment baseline signal strength, while the data reduction algo-
rithm is only sensitive to the short-term changes in signal due
to valve switching, which are, of course, due to O3 changes
(Proffitt and McLaughlin, 1983).

3.1 Precision

Since the NOAA-2 O3 instrument measures the O3 molec-
ular density, the instrument precision is expressed in units
of molecules cm−3. The intrinsic instrument precision is de-
termined by noise in the optical system, signal digitizer, and
pressure and temperature sensors. The intrinsic precision was
determined using data recorded with no sample flow through
the instrument. As shown in Fig. 5, the typical value of the
intrinsic precision is about 5× 109 molecule cm−3 (equiv-
alent to 1.4 ppb at 200 K and 100 hPa, or 0.19 ppb at 273 K
and 1013 hPa).

With a folded light path, the O3 partial pressure mea-
surement is twice as sensitive to sample flow turbulence as
a single-path configuration. To optimize instrument perfor-
mance, flow-induced noise was recorded as a function of
pressure and volume flow rate of the sample air. Figure 6
shows a typical measurement at a fixed flow rate of 20 LPM.
Based on these measurements, the flow controller was pro-
grammed to control the sample flow in flight at 27 LPM for
cell pressure< 200 hPa, 15 LPM with 200≤ cell pressure<
500 hPa, and 10 LPM with cell pressure≥ 500 hPa. At these
flow rates, the flow-induced noise is always smaller than the
intrinsic precision measured with no flow. Note that at flow
rates of 15 and 10 LPM, the minimum O3 measurement time

www.atmos-meas-tech.net/5/2201/2012/ Atmos. Meas. Tech., 5, 2201–2210, 2012
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resolution lengthens to approximately 1 s and 2 s, respec-
tively. Due to the increased flush time at lower flow rates,
the number of data points discarded immediately after V1
and V2 switches is increased from one to two and four for
15 LPM and 10 LPM, respectively (cf. the last paragraph of
Sect. 2.4).

For atmospheric sampling, additional noise generally
arises from pressure fluctuations related to the sample in-
let configuration and aircraft electronic interference. An up-
per limit of in-flight precision can be determined by exam-
ining measurement statistics in 250-s flight segments with
low O3 variability. As an example, data collected onboard the
NASA Global Hawk UAS with the simple forward-facing in-
let (Fig. 3, lower panel), an ambient pressure of 110 hPa and
a sample flow near 27 LPM yielded an in-flight 1-σ preci-
sion of approximately 1.1× 1010 molecule cm−3 (equivalent
to 3.0 ppb at 200 K and 100 hPa, or 0.41 ppb at 273 K and
1013 hPa) or approximately twice the intrinsic precision.

The precision can be greatly affected by the inlet config-
uration. On board the Global Hawk UAS with the inlet con-
figuration using the side-facing Teflon® -lined tube (Fig. 3,
upper panel), an ambient pressure of 80 hPa and a sam-
ple flow near 25 LPM yielded an in-flight 1-σ precision of
approximately 1.9× 1010 molecule cm−3 or approximately
four times the intrinsic precision. The additional noise is
attributed to small sub-Hertz oscillations in the O3 partial
pressure values.
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Fig. 6. NOAA-2 O3 instrument precision (2 Hz, 1σ ) as a func-
tion of absorption cell pressure at a fixed sample volume flow of
20 LPM. The intrinsic instrument precision (no flow) is 5× 109

molecule cm−3.

3.2 Laboratory accuracy

Since the NOAA-2 O3 instrument is based on the same prin-
ciples described by Proffitt and McLaughlin (1983) (see also
Zucco et al., 2003), their detailed error analysis can be di-
rectly applied here. Briefly, the largest error sources are ab-
sorption length, O3 absorption cross section at 253.7 nm (see,
e.g. Barnes and Mauersberger, 1987; Sander et al., 2011),
pressure and temperature of sample air inside absorption
cells, and O3 loss to the wall material. In our new instru-
ment, a high quality pressure sensor and good overall tem-
perature control ensure the temperature and pressure errors
are well less than 1 %. Temperatures measured at several
positions inside the instrument vary within±1 K of 300 K,
or about±0.4 %, during flight. Uncertainty in the absorp-
tion cross section due to temperature variation is negligible
(Barnes and Mauersberger, 1987). An all-Teflon® wetted sur-
face construction and fast sample flow prevent measurable
ambient O3 loss inside the instrument. Error in determina-
tion of the absorption cell length is also less than 1 % (3 mm).
The resulting overall accuracy is±3 %, the same as given
by Proffitt and McLaughlin (1983) without consideration of
wall loss.

As a further assessment of accuracy, the NOAA-2 O3
instrument was intercompared in the laboratory with the
NOAA-1 O3 instrument and a commercial primary stan-
dard (Model 49i-PS, Thermo Electron Corporation (TECO),
Franklin, MA). All of these instruments are based on the
same UV absorption technique. The TECO O3 instrument
has an accuracy specification of±1–2 %. It is treated at
NOAA as a primary standard using sample flows that are

Atmos. Meas. Tech., 5, 2201–2210, 2012 www.atmos-meas-tech.net/5/2201/2012/
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Fig. 7.Laboratory setup for the O3 instrument intercomparison. Gas
lines between the O3 generator and O3 instruments and valve V1
are made of PFA Teflon®. V1 is used to ensure that pressureP1
is always above laboratory ambient pressure. V2 is used to control
the pressure inside the NOAA-1 or NOAA-2 O3 instruments un-
dergoing an intercomparison with the TECO Model 49i-PS primary
standard instrument.

restricted to dry synthetic air. The laboratory setup for in-
tercomparing two instruments is shown in Fig. 7. The typical
set of results for the NOAA-2 O3 and the TECO instruments
in Fig. 8 shows that the instruments agree well with each
other with the correlation slope being 1.01 over a wide cell-
pressure range. A similar slope is found with another TECO
instrument and with the NOAA-1 O3 instrument, indicating
that the NOAA-2 O3 has a systematic positive bias of 1 %
with respect to the TECO primary reference measurement.
Although the cause of this bias is unknown, the NOAA-2 O3
atmospheric measurements are adjusted downward by 1 % to
be consistent with the other three instruments.

In conducting the intercomparison, care was taken to en-
sure that instrument leaks did not influence the outcome.
Since many parts, such as the flow switching valves and ab-
sorption cells, are made of Teflon®, leaks are always a po-
tential threat to the O3 measurements. Both NOAA-1 and
NOAA-2 O3 instruments are designed for aircraft operation
in pressurized or unpressurized payload areas. In the latter,
leaks are generally not an issue, whereas large leaks in a pres-
surized environment could potentially alter the O3 measure-
ments. We note that a leak of air with less O3 than in the sam-
ple air occurring into one of the absorption cells or further
upstream would result in a negative bias in the measurement.
Leaks further downstream do not affect the measurements.
To ensure no leaks are large enough to affect the measure-
ments, we routinely run the NOAA-1 and NOAA-2 O3 in-
struments at a range of sample pressures using the laboratory
setup shown in Fig. 7. As shown, the sample pressure (P1) for
the TECO O3 is always at a pressure slightly above ambient
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pressure. Partial control ofP1 is provided by the all-Teflon®

valve, V1. An above-ambient value ofP1 ensures that no
leaks can occur into the TECO instrument and cause errors
in the measurements. The pressure in the NOAA instruments
being compared is controlled by a second valve, V2, and a
vacuum pump. If there is no significant leak in the NOAA
instruments, then the results of the comparison should be in-
dependent ofP2, as demonstrated in Fig. 8. It is noted that
the scatter in Fig. 8, upper panel, is larger than the combined
precisions of the two instruments. We attribute this increased
scatter to the unregulated nature of the O3 generation.

3.3 Humidity artifact

A negative artifact (i.e. measured values are lower than ac-
tual ones) has been observed under some conditions when the
sample humidity abruptly changes from wet to dry (Meyer et
al., 1991; Kleindienst et al., 1993; Wilson and Birks, 2006).
This artifact appears to be related to water on the cell walls
and optical elements affecting the transmission of the unfo-
cused UV beam. When the humidity is abruptly reduced, des-
orption of water from the catalyst creates an imbalance in cell
humidity and, thereby, an artifact response. This desorption
and artifact response will in general be strongly dependent on
the composition and surface area of the catalyst material (and
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possibly cell optical components). For the catalyst and opti-
cal components used in both NOAA O3 instruments, this ar-
tifact is small under normal flight conditions (∼ 30 min from
wet lower troposphere to dry upper troposphere). To examine
the potential magnitude of the artifact, tests have been con-
ducted by replacing O3-scrubbed ambient air (∼ 1 % water)
with dry synthetic air (< 10vppm water) within a couple sec-
onds. Both instruments exhibited a negative bias of< 10 ppb
at 820 hPa that drops to∼ 2 ppb after 6 min and continuously
decreases to∼ 0.2 ppb over a period of 30 min. This artifact
is mostly pressure independent and, therefore, is relatively
more important at lower absorption cell pressures and lower
O3 values. An important feature of the NOAA instruments is
that the water artifact diminishes when O3 is present in the
dry air after the humidity change in the sample flow. Specif-
ically, when the O3 density level is above about 130 ppb at
∼ 125 hPa, the artifact is completely unobservable. This fea-
ture, together with the relatively fast decay of the artifact,
means that on an aircraft ascending quickly from near sea
level to the upper troposphere or flying out of a high humid-
ity in a cloud, the NOAA instruments will likely not suffer a
significant O3 artifact.

A positive measurement artifact could potentially occur
following a sudden increase in humidity. However, due to the
rapid equilibration of catalyst surfaces to increases in wa-
ter, this artifact is much less severe compared to the neg-
ative artifact and was found to be negligible in NOAA-1
and NOAA-2.

3.4 Field intercomparison

In March and April 2011, the NOAA-1 and NOAA-2 O3
instruments flew together on board the NASA WB-57F air-
craft based in Houston, TX as part of the NASA Mid-latitude
Airborne Cirrus Properties Experiment (MACPEX) mission.
The aircraft extensively sampled the UT/LS at altitudes up
to 18 km, with O3 mixing ratios reaching values of about
1 ppm. Data from a typical flight are shown in Fig. 9. The
agreement between the two instruments is within 1 % ex-
cept in the pressure range of 300–450 hPa, where the dif-
ference is on the order of 5 %. The probability distribution
of the differences between the two instruments is shown in
Fig. 9, lower panel. A double-Gaussian function fits the data
well, with one Gaussian peak at−1 % (with NOAA-1 being
lower) with a width of 3 %, and the other Gaussian peak at
+5 % with a width of 8 %. The second Gaussian peak cor-
responds to the data within the 300–450 hPa range, and the
first one to the remaining data. The exact cause of the 5 %
difference in the 300–450 hPa range is currently unknown.
The difference in the absorption cell pressures between the
two instruments was greatest in this pressure range and was
about 5 %, and thus potentially may be the cause of the dis-
crepancy. As mentioned above, the NOAA-2 instrument has
a redundant absorption cell pressure sensor. The NOAA-1
also has a backup pressure sensor. These backup sensors indi-
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cate that both primary sensors worked appropriately in flight.
The results of the laboratory tests shown in Fig. 8 exclude
the possibility of nonlinearity of pressure sensors causing
the problem. One possible explanation is that the NOAA-2
pressure readings had a flow-induced high bias under flight
conditions (e.g. Bernoulli effect) in this pressure range. As
shown in Fig. 1, the pressure ports of NOAA-2 are located
at the entrances of the absorption cells, where the flow may
be most unstable and affected by the inlet-induce flow in-
stability. The pressure sampling error may also help explain
the 1 % bias in the laboratory intercomparisons. The larger
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disagreement shown in Fig. 9 suggests that the accuracy of
NOAA-2 is degraded to about 5 % in the 300–450 hPa range.

The NOAA-2 O3 data shown in Fig. 9 are 2-point aver-
ages, matching the 1-s data rate of the NOAA-1 O3. The
intercomparison of precisions is not particularly meaningful
due to different inlet configurations. As it is, the NOAA-2 O3
has a slightly better precision with the 2-point average except
for occasional large noise spikes (see, e.g. spikes at 71 000 s
in Fig. 9) likely due to air flow instability in front of the inlet.

4 Conclusions

A new in situ instrument for atmospheric O3 mixing ra-
tio measurements, NOAA-2 O3, was developed and tested
in the laboratory and field. The instrument builds upon the
UV-absorption technique used by the long-standing NOAA-
1 O3 instrument, which has flown hundreds of flights in the
UT/LS. The NOAA-2 O3 instrument departs from earlier de-
signs by employing polarized UV beams in the absorption
cells in order to fold the optical path, which leads to a reduc-
tion in the physical cell length required for a given precision.
A capillary Hg lamp was used to increase the available UV
intensity. Laboratory tests with an O3 primary standard in-
strument confirm an accuracy of better than 2 %. Flight tests
on the NASA WB-57F and Global Hawk UAS platforms
showed that laboratory precision and accuracy are main-
tained in flight. In comparison to the NOAA-1 O3 instrument,
the NOAA-2 O3 instrument has an improved sampling rate
(×2), a better intrinsic precision (by 25 %), reduced weight
(by 30 %) and reduced payload volume (by 43 %), while
maintaining a similar accuracy (< ±3 % excluding operation
in the 300–450 hPa range, where the accuracy may be de-
graded to about 5 %) and power consumption. The sampling
rate of 2 Hz of the NOAA-2 O3 corresponds to a horizontal
resolution of 100–200 m and a vertical resolution of 5 m or
less, respectively, at typical research speeds. These features
represent a substantial improvement in the feasibility and de-
sirability of integrating the NOAA-2 O3 instrument on board
UAS platforms, which generally have less payload capacity,
as well as on manned aircraft platforms.
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