Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.089 IF 3.089
  • IF 5-year<br/> value: 3.700 IF 5-year
  • CiteScore<br/> value: 3.59 CiteScore
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
Atmos. Meas. Tech., 6, 1217-1226, 2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
14 May 2013
Design and performance of a Nafion dryer for continuous operation at CO2 and CH4 air monitoring sites
L. R. Welp1, R. F. Keeling1, R. F. Weiss1, W. Paplawsky1, and S. Heckman2 1Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA
2Earth Networks, Inc., 12410 Milestone Center Drive, Germantown, MD, USA
Abstract. In preparation for routine deployment in a network of greenhouse gas monitoring stations, we have designed and tested a simple method for drying ambient air to near or below 0.2% (2000 ppm) mole fraction H2O using a Nafion dryer. The inlet system was designed for use with cavity ring-down spectrometer (CRDS) analyzers such as the Picarro model G2301 that measure H2O in addition to their principal analytes, in this case CO2 and CH4. These analyzers report dry-gas mixing ratios without drying the sample by measuring H2O mixing ratio at the same frequency as the main analytes, and then correcting for the dilution and peak broadening effects of H2O on the mixing ratios of the other analytes measured in moist air. However, it is difficult to accurately validate the water vapor correction in the field. By substantially lowering the amount of H2O in the sample, uncertainties in the applied water vapor corrections can be reduced by an order of magnitude or more, thus eliminating the need to determine instrument-specific water vapor correction coefficients and to verify the stability over time. Our Nafion drying inlet system takes advantage of the extra capacity of the analyzer pump to redirect 30% of the dry gas exiting the Nafion to the outer shell side of the dryer and has no consumables. We tested the Nafion dryer against a cryotrap (−97 °C) method for removing H2O and found that in wet-air tests, the Nafion reduces the CO2 dry-gas mixing ratios of the sample gas by as much as 0.1 ± 0.01 ppm due to leakage across the membrane. The effect on CH4 was smaller and varied within ± 0.2 ppb, with an approximate uncertainty of 0.1 ppb. The Nafion-induced CO2 bias is partially offset by sending the dry reference gases through the Nafion dryer as well. The residual bias due to the impact of moisture differences between sample and reference gas on the permeation through the Nafion was approximately −0.05 ppm for CO2 and varied within ± 0.2 ppb for CH4. The uncertainty of this partial drying method is within the WMO compatibility guidelines for the Northern Hemisphere, 0.1 ppm for CO2 and 2 ppb for CH4, and is comparable to experimentally determining water vapor corrections for each instrument but less subject to concerns of possible drift in these corrections.

Citation: Welp, L. R., Keeling, R. F., Weiss, R. F., Paplawsky, W., and Heckman, S.: Design and performance of a Nafion dryer for continuous operation at CO2 and CH4 air monitoring sites, Atmos. Meas. Tech., 6, 1217-1226, doi:10.5194/amt-6-1217-2013, 2013.
Publications Copernicus