Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Atmos. Meas. Tech., 6, 1425-1445, 2013
http://www.atmos-meas-tech.net/6/1425/2013/
doi:10.5194/amt-6-1425-2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
27 May 2013
On the interference of Kr during carbon isotope analysis of methane using continuous-flow combustion–isotope ratio mass spectrometry
J. Schmitt1, B. Seth1, M. Bock1, C. van der Veen3, L. Möller2, C. J. Sapart3, M. Prokopiou3, T. Sowers4, T. Röckmann3, and H. Fischer1 1Climate and Environmental Physics, Physics Institute, & Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
2Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
3Institute for Marine and Atmospheric research Utrecht, Utrecht University, Princetonplein 5, 3584CC Utrecht, The Netherlands
4Earth and Environment Systems Institute, Penn State University, University Park, PA, USA
Abstract. Stable carbon isotope analysis of methane (δ13C of CH4) on atmospheric samples is one key method to constrain the current and past atmospheric CH4 budget. A frequently applied measurement technique is gas chromatography (GC) isotope ratio mass spectrometry (IRMS) coupled to a combustion-preconcentration unit. This report shows that the atmospheric trace gas krypton (Kr) can severely interfere during the mass spectrometric measurement, leading to significant biases in δ13C of CH4, if krypton is not sufficiently separated during the analysis. According to our experiments, the krypton interference is likely composed of two individual effects, with the lateral tailing of the doubly charged 86Kr peak affecting the neighbouring m/z 44 and partially the m/z 45 Faraday cups. Additionally, a broad signal affecting m/z 45 and especially m/z 46 is assumed to result from scattered ions of singly charged krypton. The introduced bias in the measured isotope ratios is dependent on the chromatographic separation, the krypton-to-CH4 mixing ratio in the sample, the focusing of the mass spectrometer as well as the detector configuration and can amount to up to several per mil in δ13C. Apart from technical solutions to avoid this interference, we present correction routines to a posteriori remove the bias.

Citation: Schmitt, J., Seth, B., Bock, M., van der Veen, C., Möller, L., Sapart, C. J., Prokopiou, M., Sowers, T., Röckmann, T., and Fischer, H.: On the interference of Kr during carbon isotope analysis of methane using continuous-flow combustion–isotope ratio mass spectrometry, Atmos. Meas. Tech., 6, 1425-1445, doi:10.5194/amt-6-1425-2013, 2013.
Publications Copernicus
Download
Share