Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.089 IF 3.089
  • IF 5-year<br/> value: 3.700 IF 5-year
    3.700
  • CiteScore<br/> value: 3.59 CiteScore
    3.59
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
Atmos. Meas. Tech., 6, 3369-3392, 2013
http://www.atmos-meas-tech.net/6/3369/2013/
doi:10.5194/amt-6-3369-2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
09 Dec 2013
Autofluorescence of atmospheric bioaerosols: spectral fingerprints and taxonomic trends of pollen
C. Pöhlker1, J. A. Huffman1,2, J.-D. Förster1, and U. Pöschl1 1Max Planck Institute for Chemistry, Biogeochemistry Department and Multiphase Chemistry Department, P.O. Box 3060, 55020 Mainz, Germany
2University of Denver, Department of Chemistry and Biochemistry, 2190 E. Illif Ave., Denver, Colorado 80208, USA
Abstract. Primary biological aerosol particles (PBAP) are important factors in atmospheric cycling, climate, and public health. Pollen is a major fraction of PBAP and is receiving increasing attention due to its high allergenic potential and the associated impacts on personal life quality and economy. Recently, autofluorescence-based techniques have proven to be valuable tools for real time, in situ quantification and classification of PBAP. First studies suggest that the autofluorescence of pollen may be sufficiently selective to be utilized for an automated and real-time monitoring of pollen in ambient air. However, the degree of selectivity autofluorescence can provide is still in question and actively debated.

This study addresses the origin, properties, and selectivity of autofluorescence from natural pollen by fluorescence microscopy and spectroscopy measurements along with a systematic synthesis of related literature. We show that dry pollen reveals characteristic and reproducible autofluorescence signatures which are shaped by cell wall associated fluorophores, such as phenolic compounds and carotenoid pigments. In addition, fluorescence signals from proteins and chlorophyll a were observed in some species. The abundance and intensity of the individual fluorescence signals show certain taxonomic trends and allow systematic differentiation from bacteria and fungal spores due to the lack of proteins on the grain surface. Principal component analysis was used to explore the discrimination potential of pollen autofluorescence, in combination with size and shape, revealing a differentiation of pollen on family level. Our results help explore the levels of selectivity that autofluorescence-based techniques can provide to PBAP analysis and will support the development and application of autofluorescence-based detectors for monitoring of allergenic pollen in the atmosphere.


Citation: Pöhlker, C., Huffman, J. A., Förster, J.-D., and Pöschl, U.: Autofluorescence of atmospheric bioaerosols: spectral fingerprints and taxonomic trends of pollen, Atmos. Meas. Tech., 6, 3369-3392, doi:10.5194/amt-6-3369-2013, 2013.
Publications Copernicus
Download
Share