
Supplement of Atmos. Meas. Tech., 7, 2121–2135, 2014
http://www.atmos-meas-tech.net/7/2121/2014/
doi:10.5194/amt-7-2121-2014-supplement
© Author(s) 2014. CC Attribution 3.0 License.

Supplement of

Evaluation of the performance of a particle concentrator for online
instrumentation

S. Saarikoski et al.

Correspondence to:S. Saarikoski (sanna.saarikoski@fmi.fi)



 
 

Supplements 

 
Table S1. The shift of particles size for monodisperse AS and DOS particles in the m-
VACES. 
 

Particle size (nm) AS % (nm) DOS % (nm) 

50 20 (10) 30 (5.9) 
70 7.7 (5.4) 7.7 (5.4) 
100 4.0 (4.0)  4.0 (4.0) 
200 3.5 (7.0) 3.5 (7.0) 
300 0.0 (0.0) 0.0 (0.0) 
 



 
 

 

 
 

 
Fig. S1. Time series for the size distributions of particle number (a-b), mass (c-d) and 
enrichment factor. (a) and (c) are for ambient and (b) and (d) for concentrated aerosol. 
Particle mass was calculated by using the density of 1.48 g cm-3. 
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Fig. S2. Size distribution of ammonium during the period when the particles were acidic 
(April 12, 2010) and nearly neutral (April 13, 2010; 6 am to midnight). Ambient size 
distributions were smoothed by one point. 
 
 



 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. S3. Scatter plots of the mass fragments in ambient and concentrated OA separated 
into different compound classes. Carbon clusters (Cx) were measured only with the laser 
on and the concentration of C1 (m/z 12) according to the fragmentation Table in Onasch 
et al. (2012). Concentrated aerosol is divided by the average EF for organics (27.08; a, c-
e) and r-BC (37.61; b) (Table 2). One to one ratio is shown by dash lines. 
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Fig. S4. Time series of ammonium and amines for the concentrated aerosol (a) and the 
enrichment factor for ammonium (b). 
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Fig. S5. Diurnal trends for OM:OC, O:C, H:C and N:C for concentrated and ambient OA.  



 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S6. Correlation of mass spectra for PMF factors for ambient and concentrated OA. 
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Fig. S7. The variation of Q/Qexpected with the value of fPEAK for ambient (a) and 
concentrated (b) PMF solution. 
 
 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. S8. The variation of time series and mass spectra for the PMF factors with the 
fPEAK values from -0.4 to 1.6. Ambient (a) and concentrated (b) OA. 



 
 

Detection of trace elements 

HR-AMS can detect several trace elements with lower melting and boiling points in near 

real-time (Salcedo et al., 2012), and furthermore, the SP-AMS can detect some additional 

metals and trace elements due to the laser vaporizer (Onasch et al., 2012). However, the 

concentrations of trace metals are typically very low in ambient air, especially in Finland, 

and therefore their real-time detection is challenging. Thus the use of a concentrator may 

allow the real-time detection of elements that otherwise could not be observed. 

 

Five trace elements were detected in ambient air without the m-VACES; aluminum, 

vanadium, iron, zinc and rubidium. Except zinc, all of the elements were most likely 

associated with the laser vaporization as there was a steep drop in the recorded 

concentrations when the laser vaporizer was switched off. Rubidium can undergo surface 

ionization with a tungsten vaporizer making its quantification difficult (Drewnick et al., 

2006), similar to sodium and potassium. In this study surface ionization in tungsten 

vaporizer was not likely to be a confounding issue, as rubidium seemed to be totally 

vaporized by the laser and not hit the tungsten vaporizer, however, surface ionization can 

also take place on the hot surface of the r-BC particles discussed more in Carbone et al. 

(2014). Slow evaporation is another issue related to the detection of semi-refractory 

elements with the AMS, requiring special data analysis procedures (Salcedo et al., 2012). 

Zinc signals were consistent with slow evaporation at tungsten vaporizer the ratio of 

closed to open being around 0.70 and 0.25 for ambient and concentrated aerosol, 

respectively (Fig. S9). However, a part of the difference could be due to the uncertainty 

in the detection of low signal for Zn. 

 

Trace elements gave rather similar EFs to the other species measured, however, the 

standard deviations for EFs were large probably due to the high uncertainty associated 

with the determination of their low ambient concentrations (Table 2). Of all the elements, 

rubidium had the smallest enrichment factor and aluminum the highest. EFs were 

calculated for the most abundant isotopes (m/z 26.982 for Al, m/z 50.944 for V, m/z 

55.935 for Fe, m/z 84.912 for Rb), except for zinc that was detected at the isotope 68Zn 

(m/z 67.925). All the other isotopes of V, Fe and Zn could not be resolved from the 



 
 

neighboring peaks or were below their detection limits. The isotopic ratio of 85Rb and 
87Rb is shown in Fig. S10 for open and closed modes. The isotopic ratio of 87Rb to 85Rb 

was near the natural isotopic ratio of 0.386 for both the modes. Unfortunately, it was not 

possible to investigate size-dependent EFs for trace elements as they composed only a 

minor fraction of the total signal at each unit mass. Additionally, due to the limited data 

coverage from the laser vaporizer, diurnal patters for the EF could not be calculated. 

 

Aluminum, iron and rubidium correlated with r-BC. This suggests that they have similar 

combustion-related origins in Helsinki, mostly in the form of traffic sources, either from 

exhaust or non-exhaust (e.g. road dust) emissions. Zinc has been shown to be associated 

with regional or long-range transported air masses in Helsinki whereas vanadium has 

more local sources like heavy oil combustion (Pakkanen et al., 2001). 

 

Besides those five trace elements that were detected in ambient air without the 

concentrator, three additional elements were detected only with the m-VACES. These 

elements were strontium, zirconium and cadmium (Fig. S11) and they were identified 

based on their exact m/z. Strontium was detected at m/z 87.906 and zirconium at m/z 

89.905 that were their most abundant isotopes. Cadmium was observed at m/z 111.903. 

Unfortunately, any other isotopes of these elements could not be detected, and therefore 

their existence could not be verified by the isotopic ratios. Of those three, only strontium 

seemed to be associated with r-BC and vaporized with the laser. However, because 

zirconium in its elemental form requires about 4400 ºC to be vaporized, one possibility is 

that this trace element was associated with other elements forming for example salts or 

oxides that could be vaporized with lower temperatures. Neither zirconium nor cadmium 

showed evidence of slow evaporation in tungsten vaporizer indicated by a signal in the 

closed mode. 

 

Strontium and zirconium did not have any clear correlation with the other species 

measured whereas cadmium correlated with organics and r-BC. That was unexpected as 

cadmium did not seem to be in the same particles with r-BC (detected also without laser). 

Previously cadmium has been related to several sources in Helsinki and it was found to 



 
 

be mostly regional or long-range transported (Pakkanen et al., 2001). Strontium, on the 

other hand, has been associated with traffic-related components from vehicle motor oil 

but it can also originate from crustal material. Zirconium has not been reported in 

Helsinki urban air before but in US it has been reported e.g. from the emission of the 

coal-fired boilers and in samples of geological material (Watson et al., 1995). 
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Fig. S9. Slow evaporation of zinc. Open and closed signal for ambient and concentrated 
aerosol. 
 

 

 

 



 
 

70

60

50

40

30

20

10

0

87
R

b 
(n

g
 m

-3
, 

R
IE

=
1)

160140120100806040200
85

Rb (ng m
-3

, RIE=1)

14

12

10

8

6

4

2

0

87
R

b
 (

n
g 

m
-3

, R
IE

=
1

)

403020100
85

Rb (ng m
-3

, RIE=1)

Open Closed

  y = 0.391*x 2

  r
2
= 0.931

  y = 0.378*x 2

  r
2
= 0.930

 
 
Fig. S10. Scatterplot of signal from 87Rb and 85Rb for open and closed modes. Expected 
natural isotopic ratio is shown by a dash line. 
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Fig. S11. Strontium, zirconium and cadmium peaks for ambient and concentrated 
aerosol. Additional isotopes of these ions could not be detected.  
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