
Atmos. Meas. Tech., 7, 599–607, 2014
www.atmos-meas-tech.net/7/599/2014/
doi:10.5194/amt-7-599-2014
© Author(s) 2014. CC Attribution 3.0 License.

Atmospheric 
Measurement

Techniques
O

pen A
ccess

Fast reconstruction of hyperspectral radiative transfer simulations
by using small spectral subsets: application to the oxygen A band

A. Hollstein and R. Lindstrot

Freie Universität Berlin Department of Earth Sciences Institute for Space Sciences, Carl-Heinrich-Becker-Weg 6–10,
12165 Berlin, Germany

Correspondence to:A. Hollstein (andre.hollstein@fu-berlin.de)

Received: 8 August 2013 – Published in Atmos. Meas. Tech. Discuss.: 11 September 2013
Revised: 17 December 2013 – Accepted: 30 December 2013 – Published: 21 February 2014

Abstract. Hyperspectral radiative transfer simulations are a
versatile tool in remote sensing but can pose a major com-
putational burden. We describe a simple method to construct
hyperspectral simulation results by using only a small spec-
tral subsample of the simulated wavelength range, thus lead-
ing to major speedups in such simulations. This is achieved
by computing principal components for a small number of
representative hyperspectral spectra and then deriving a re-
construction matrix for a specific spectral subset of channels
to compute the hyperspectral data. The method is applied and
discussed in detail using the example of top-of-atmosphere
radiances in the oxygen A band, leading to speedups in the
range of one to two orders of magnitude when compared to
radiative transfer simulations at full spectral resolution.

1 Introduction

Radiative transfer simulations are a key tool for the develop-
ment of remote sensing algorithms in the field of earth obser-
vation. Depending on the spectral domain, a variety of tech-
niques are used to solve the radiative transfer equation (RTE).
Such simulated radiances can be compared to measurements
and thus used for the inversion for the actual physical state of
the atmosphere–surface or atmosphere–ocean (e.g.,Thomas
and Stamnes, 2008, and references therein).

Most radiative transfer models for the ultraviolet (UV)
to short-wavelength infrared (SWIR) region that we are
aware of solve a monochromatic version of the RTE and are
used for channel-based radiative transfer simulations. Even if
models are capable of treating problems with inelastic scat-
tering, monochromatic RTE solvers with additional radiance

sinks and sources are generally used (e.g.,Landgraf et al.,
2004, and their treatment of atmospheric Raman scattering).

Therefore, for problems involving hyperspectrally re-
solved radiance measurements, the obvious approach is to
perform large numbers of independent simulations. Various
techniques for the increase of the computational efficiency
of these radiative transfer simulations have been developed
(e.g.,Kokhanovsky, 2013, chapter 10 by Vijay Natraj). Two
main approaches can be distinguished. Firstly, by relaxing
the constraints on the accuracy of the solution of the ra-
diative transfer equation, the computational time needed for
each individual radiative transfer simulation is reduced. Ex-
amples are the use of two stream methods (e.g.,Meador
and Weaver, 1980), reduced order of scatterings (e.g.,Natraj
and Spurr, 2007), replacing line-by-line absorption calcula-
tions by exponential sum fitting techniques (ESFTs) (e.g.,
Wiscombe and Evans, 1977) and their advancements (e.g.,
Lacis and Oinas, 1991; Bennartz and Fischer, 2000; Doppler
et al., 2013), or by relying on pre-computed databases (e.g.,
Wang et al., 2013). The error with respect to more rigor-
ous solutions of the RTE in general depends on the scene
and spectral band and can be estimated by carrying out rig-
orous simulations. Secondly, by making use of the inherent
redundancy of line-by-line calculations by using data reduc-
tion techniques such as principal component analysis (e.g.,
Efremenko et al., 2013; Jolliffe, 2002), the number of indi-
vidual radiative transfer simulations is reduced. Approaches
have been published for the IR spectral region byLiu et al.
(2006) and the VIS to SWIR region byNatraj et al.(2010,
2005) andLindstrot and Preusker(2012).

In this paper, we propose a simple method in which only a
small subset of the spectra is simulated and used to generate a
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reconstruction matrix, based on principal component analy-
sis, the expansion coefficients of the data, and the pseudo-
inverse of a spectral subsample of the data. Then, for the
bulk of the spectra to be simulated, only a relatively small
spectral subset of the simulations is carried out, and hyper-
spectral results are constructed using multiplication with the
reconstruction matrix. The method is explained and tested
using the oxygen A band as test case. We provide numbers
on the accuracy of the method vs. the achievable speedup.
The method is independent of the underlying radiative trans-
fer model and simple enough to be easily applied to existing
radiative transfer schemes. The method is entirely based on
post-processing techniques, so that the RT scheme itself does
not have to be modified.

The oxygen A band was chosen since it allows a broad
range of applications that could benefit from faster and more
accurate radiative transfer simulations. Among others, possi-
ble applications are the retrieval of cloud-top pressure (e.g.,
Koelemeijer et al., 2001; Fischer and Grassl, 1991; Preusker
and Lindstrot, 2009) and aerosol vertical distribution (e.g.,
Dubuisson et al., 2009; Sanghavi et al., 2012). Also, more
and more hyperspectral radiance measurements will become
available with current and future sensors such as TANSO-
FTS on GOSAT (Suto et al., 2010), GOSAT-2 (Nakajima
et al., 2012), TROPOMI on S-5 P (Veefkind et al., 2012),
or OCO2 (e.g.,Boesch et al., 2011), to name a few.

2 Notation

Throughout this paper a convenient matrix notation is em-
ployed, which allows denoting matrix elements and sub-
sets of matrix elements. A reala × b matrix is defined
asM ∈ Ra×b, andM i,j ∈ R,0 < i,j ≤ a,b identifies a sin-
gle element ofM . Row and columnar subsets are ac-
cessed using a− sign: M i,− = (Mi,1, . . . ,Mi,b) ∈ Rb, as
well as M−,j = (M1,j , . . . ,Ma,j ) ∈ Ra . To access subsets
of elements in rows and columns, a notation of index sets
is introduced:sn,l

= (s1, . . . , sl) with s1 > 0, si < si+1, sl ≤

n,si ∈ N, andn, l ∈ N. This notation denotes an ordered
list of l unique elements between 1 andn. A specific in-
dex set is defined when its elements(s1, . . . , sl) are set.
With the introduced matrix notation, such an index set can
be used to access subsets of rows and columns:M i,sb,l =

(Mi,s1, . . . ,Mi,sl ) ∈ Rl .

3 Principal components as data reduction technique

The method was developed keeping in mind a radiative trans-
fer forward operator based on a lookup table, although an
application to other usage scenarios (e.g., forward radia-
tive transfer simulations) is straightforward. Here we as-
sume a forward radiative transfer operator (RT), which re-
lates the state vectorx ∈ Rnx to the top-of-atmosphere ra-
diance spectrumy ∈ Rnλ , using a spectral calibration vector

λ = (λ1, . . . ,λnλ) ∈ Rnλ with ∀i,j, i 6= j : λi 6= λj :

y = RT(x,λ). (1)

For simplicity, the radiative transfer simulations are stored
in a two-dimensional lookup table matrixL ∈ Rnλ×nL , with
nL =

∏nx

j=1 ‖ x̂j
‖, where‖ · ‖ denotes the number of ele-

ments of a vector, and the vectorsx̂j
= (x̂

j

1, . . . , x̂
j

‖x̂j
‖
) con-

tain grid points for each state vector dimension. The corre-
sponding parameter states are stored in the parameter matrix
X ∈ (R)nx×nL such that for all rowsi,

L−,i = RT(X−,i,λ). (2)

The matricesX and L could be used to construct a fast
forward operator based on multivariate interpolation. A main
problem of this approach is that even for small parameter
spaces the matrixL can become large, especially if a very
high spectral resolution is needed. This naturally leads to
the employment of data reduction techniques like principal
component analysis. The main idea is to replace the large
matrix L with two much smaller matricesP ∈ Rnλ×nP and
C ∈ RnP ×nL with np � nλ, such that each spectrumL−,i can
be expressed as

L−,i = P · C−,i + O[nP ]. (3)

The matrixP contains the principal components up to the
order nP , and the matrixC contains the expansion coeffi-
cients, which express the original spectra in thenP dimen-
sional space spanned by the principal components:

C−,i = Pᵀ
· L−,i . (4)

The principal components are orthogonal by construc-
tion, and thusP is a semi-orthogonal matrix withPT

= P−1,
which simplifies the computation of the expansion coeffi-
cientsC−,i .

The reconstruction of a spectrumL−,i is associated with
an errorO[nP ], which in general decreases with increasing
nP . For a given problem,nP has to be chosen such that the
residualO[nP ] is below the user requirement. The memory
requirement for the matrixC is much smaller than forL ,
and interpolation can be implemented much faster. There are
two main downsides to this approach. Firstly, the singular
vector decomposition ofL becomes increasingly expensive
with respect to computational time with increasingnL. Sec-
ondly, to compute the matrixC, the complete matrixL must
be computed and stored in advance, which in general is time-
consuming and costly in terms of storage and backup.

Both of these downsides are discussed in detail in this pa-
per using the oxygen A band as an example. Strictly speak-
ing, the presented analysis is thus only valid for this part of
the spectrum, but we do not see any substantial obstacles to
applying the technique to other parts of the spectrum.
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4 Constructing the principal components from small
parameter state space subsets of L

The computation ofP becomes numerically more expen-
sive with increasing size of the lookup tableL and in-
creasing spectral resolution. For actual computations we
used the principal component analysis algorithm provided
by the Python package Scikit-learn (Pedregosa et al., 2011).
Throughout this paper a moderately small lookup table is dis-
cussed with the parameter state space sampling given in Ta-
ble 1. The variability of the database is illustrated in Fig.1.
The lookup table was computed using the Matrix Opera-
tor Model (MOMO) radiative transfer model (seeFell and
Fischer, 2001; Hollstein and Fischer, 2012), which is a ma-
trix operator model widely used at Freie Universität Berlin.
The gaseous absorption was computed using line parame-
ters from the HITRAN spectral database (Rothman et al.,
2009) and a modified scheme to compute the K distribu-
tion (Bennartz and Fischer, 2000). As shown in Table1,
the variation of the parameter space includes surface pres-
sure, aerosol optical thickness, aerosol mean height, aerosol
type, surface reflectance1, and the viewing geometry. Aerosol
optical models were implemented according toLevy et al.
(2007). These models are also used by the MODIS aerosol
retrieval and were specifically designed to fit observations
for different locations on the globe. From the published op-
tical properties, the urban, neutral, dust, continental, and ab-
sorbing types were implemented, and Mie calculations using
the implementation provided byWiscombe(1980) were used
to compute phase functions, extinction, and single-scattering
albedo. This state vector variability was set up to reproduce
the variability of a clear-sky scene over land. The temper-
ature profile was explicitly excluded from the state vector
to keep it simple but realistic. As shown byLindstrot and
Preusker(2012), the spectral variability due to the tempera-
ture profile of the atmosphere can be accounted for by per-
forming radiative transfer simulations only for a set of princi-
pal temperature components. The radiance spectrum can then
be constructed as linear superposition of the simulated spec-
tra for the principal temperature profile components, by using
the expansion coefficients of the actual temperature profile in
the space spanned by the principal temperature profile com-
ponents.

The oxygen A band was simulated with a spectral sam-
pling of 0.005 nm, which led to 4500 spectral channels. The
parameter sampling as stated in Table1 led to 121 500 differ-
ent parameter states.

Numerical experiments show that, for this particular data
set, the principal component matrixP can be computed with-
out using the complete matrixL , but by using a much smaller
subset of the state spaceL−,rnL,nr , wherernL,nr is an in-
dex set withnr randomly chosen members from thenL =

1The surface reflectance spectrum is assumed to be linear and is
modeled using a reflectance value at 755 nm and at 780 nm.
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Fig. 1. The left panel illustrates the variability of the used spec-
tral database by showing some randomly selected spectra. The right
panel shares the reflectance axis with the left panel and shows log-
arithmic histograms for four selected wavelengths.

121 500 available states. The reconstruction signal-to-noise
ratio (SNR) is used as simple scalar figure to test the recon-
struction quality of each spectrum:

SNR(r, t) = mean(t)/stdev(r − t). (5)

It is computed as the ratio of the mean value over all chan-
nels for a spectrum labeled as trutht and the standard de-
viation of the differences oft and a reconstructed spectrum
r.

Figure 2 shows the mean and standard deviation of this
value for all spectra in the lookup tableL with respect to
the size of the random sample that was used to compute the
principal component matrixP. Randomly selected parame-
ter states are used to computenP = 15 principal components
with nP kept constant throughout this paper. The number
of used principal components in general controls the recon-
struction quality, where more components lead to a better re-
construction. Then, the reconstruction SNR is computed for
all spectra in the lookup table, and these values are reduced to
their mean value and standard deviation. This procedure was
repeated 50 times to remove the effects of a particular real-
ization of a random state sample and mean values are shown.

The data clearly show a SNR convergence to≈ 2500 for
randomly chosen sets larger then a few hundred. The stan-
dard deviation of the reconstruction SNR also converges to a
finite number. This can be understood by analyzing the un-
derlying histograms of the reconstruction SNR for various
sample sizes, which is shown in Fig.3. The analysis shows
that the histograms for a sample size of 500 and 5000 are very
similar. For these, the wide range of the reconstruction SNR
is entirely controlled by the number of principal components
and not the sample size that was used to construct the matrix
P. The case with a sample size of only 5 is clearly below that
range and shows much smaller SNR values, which is caused
by the small sample size.

Which of the state vectors in the lookup table are asso-
ciated with the largest reconstruction errors is probably of
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Table 1.State vector parameters of the discussed lookup table database. The state space contains physical parameters as well as the viewing
geometry of a hypothetical instrument. The nadir viewing geometry is constrained to 0◦–40◦ where the solar zenith angle and the relative
viewing azimuth are less constrained. The aerosol optical models were implemented according toLevy et al.(2007). Here, a rather coarse
resolution for all parameter states was chosen to simplify the presented analysis. The total number of 3· 3 · 3 · 5 · 3 · 3 · 4 · 5 · 5 = 121 500
physical cases is considered. The spectral sampling is 0.005 nm, and 4500 channels within theO2A band were simulated. Altogether this
table represents 121 500· 4500≈ 5.5× 108 radiative transfer simulations.

Surface pressureρ nρ = 3 ρ = 800 hPa, 950 hPa, 1050 hPa
Aerosol optical thickness nτ = 3 τ = 0.0,0.1,1.0
Aerosol center height nh = 3 h = 500 m, 2500 m, 4500 m
Aerosol type nt = 5 t = 1,2,3,4,5 (dust, urban, continental, neutral, absorbing)
Surface reflectance at 755 nmnα1 = 3 α1 = 0.1, 0.4, 0.7
Surface reflectance at 780 nmnα2 = 3 α1 = 0.1, 0.4, 0.7
Viewing zenith angleµ nµ = 4 µ = 0.00, 13.63, 25.88, 38.10 in deg
Solar zenith angleµS nµS = 5 µS = 0.0, 13.63, 25.88, 38.10, 50.32, 62.53 in deg
Relative azimuth angleφ nφ = 5 φ = 0.00, 37.89, 75.79, 113.68, 151.58 in deg
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Fig. 2. Reconstruction SNR for a lookup table of top of atmosphere radiances in the Oxygen A-Band
(see Table 1 and Figure 5 for reference.). The reconstruction SNR was defined as the ratio of the standard
deviation of the residual and the mean value of the truth where the residual was defined as the difference
between truth and reconstruction. The considered index set was randomly chosen and for each step,
computations were repeated 50 times and the mean value is shown. Shown is the mean reconstruction
SNR which is the mean value over the reconstruction SNR for all cases in the lookup table. The grey
shaded area shows the corresponding standard deviation. A histogram for the whole dataset is shown in
Figure 3.
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Fig. 2.Reconstruction SNR for a lookup table of top-of-atmosphere
radiances in the oxygen A band (see Table1 and Fig.5 for refer-
ence). The reconstruction SNR was defined as the ratio of the stan-
dard deviation of the residual and the mean value of the truth where
the residual was defined as the difference between truth and recon-
struction. The considered index set was randomly chosen. For each
step, computations were repeated 50 times, and the mean value is
shown. Shown is the mean reconstruction SNR, which is the mean
value over the reconstruction SNR for all cases in the lookup table.
The grey shaded area shows the corresponding standard deviation.
A histogram for the whole data set is shown in Fig.3.

interest for users,. Figure4 shows a histogram of state vec-
tor element values of those 10 % of the state vectors exhibit-
ing the smallest reconstruction SNR, that is, the largest re-
construction errors. For this figure, 500 randomly selected
states were used to compute the principal components. The
states are clearly not equally distributed within this sample,
but the over- and under-representation of some states over
others is approximately within a factor of two. This fraction
is dominated by cases with lower reflectivity where the re-
construction SNR is naturally smaller. This is clearly shown
by the fact that surface reflectivity values of 0.7 are not rep-
resented within this sample and that the 0.1 case is largely
over-represented. In a similar manner, this behavior is shown
by the frequency of occurrence of the different viewing
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Fig. 3. Histograms of the reconstruction SNR for various sample
sizes.

angles. The different aerosol types are almost equally dis-
tributed within this sample since their effect on the absolute
reflectance is much smaller then the effect from the viewing
geometry or surface reflectance.

Although not explicitly shown here, the states that have
the smallest reconstruction error are likely among the set that
was used to compute the principal components in the first
place. This emphasizes the fact that these states should be
representative for the total data set to achieve almost uniform
distribution of the reconstruction error.

This analysis shows that a fairly small subset of states
within L is sufficient to construct the principal components
for the whole data set. This fact immediately raises the ques-
tion of whether the complete lookup tableL is needed to
compute the coefficient matrixC as defined in Eq. (4), which
is discussed in the next section.

5 Choosing small spectral subsets to construct the
coefficient matrix C

Equation (4) states how the coefficient matrixC can be com-
puted from the whole lookup table matrixL if the principal
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Fig. 4.Normalized histograms for parameter state occurrence in the
lowest 10 % fraction of a reconstruction SNR data set based on 500
samples. The occurring states are scaled to a range of[0,1] such that
they can be shown on the same axes. The corresponding values are
shown in the legend. The occurrences are normalized by the sample
size and multiplied by the number of unique parameter values (e.g.,
three for surface pressure and five for the aerosol type). A value of
one indicates equal representation of this particular parameter value
within the data set, while larger and smaller values represent over-
and under-representation.

component matrixP is already known. In the previous sec-
tion, it was shown that only a relatively small subset of the
states withinL is needed to compute the principal component
matrix P. In this section, it will be discussed how the ex-
pansion coefficients can be computed without requiring the
knowledge of the total spectrum, such that far fewer radiative
transfer simulations have to be carried out. Our approach is
to assume that spectral subsamplesλn

= λnλ,n,n � nλ exist,
which are sufficient to compute the expansion coefficients up
to an errorO[λn

]:

C−,i = Pᵀ
· L−,i = P̃ᵀ(λn) · Lλn,i + O[λn

], (6)

whereP̃(λn) ∈ Rn×nP acts as an effective principal compo-
nent matrix for a spectral subset, which, after multiplication
with the simulations at the selected spectral subset points,
produces the coefficients of the original expansion coeffi-
cientsC−,i . In that respect,̃P is a function of a particular
spectral subset, and the channel subsetλn ideally identifies
the channels carrying the information sufficient to recon-
struct the complete spectrum. Such an idea of identifying the
channels that carry the most information has been used in the
past, for example, to specify the channel layout in the oxygen
A band of the spaceborne remote sensing instrument MERIS
on board the Envisat platform (e.g.,Kollewe and Fischer,
1994). This led to the definition of three channels with mod-
erate spectral width between 3.75 nm and 15 nm. Here, we
focus on reconstruction of the complete hyperspectral data
set using the channels that carry sufficient information.

By assuming thatO[λn
] vanishes,̃P can be computed as

the matrix product of the coefficient matrix and the pseudo-
inverse of the lookup table matrix for the chosen subsets of
states and spectral channels:

P̃ᵀ(λn) = C−,sns · (Lλn,nns )−1. (7)
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Fig. 5. The grey line shows an example spectrum from the lookup
table. The red, green and blue lines are the result if only every 500th,
200th, or 100th channel of the original spectrum is considered.
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Fig. 6. The grey line shows the first principal component for the complete spectral resolution (P0,−)
while the colored lines show the corresponding rows for P̃ for three sample sizes. The equal distribution
sampling technique was used.

24

Fig. 6. The grey line shows the first principal component for the
complete spectral resolution (P0,−) while the colored lines show
the corresponding rows for̃P for three sample sizes. The equal dis-
tribution sampling technique was used.

Here,sns = snL,ns is used as a shorthand notation for the
state subset that was used to constructP. Necessary for̃P
to exist is the existence of the pseudo-inverse of the lookup
table with respect to both the spectral and the state subset.

Equations (7) and (6) are the two main equations within
this paper, since they define the effective principal compo-
nent matrixP̃ and show how it can be used to compute the
hyperspectral expansion coefficients.

As a consequence, two points must be discussed. Firstly,
how can spectral subsets be chosen optimally? And secondly,
how many channels according to a selection scheme are re-
quired in order to reduce the reconstruction errorO[λn

] to a
level well below the user requirements?

Three different methods for the selection of spectral sub-
sets are discussed and compared within the next subsec-
tions. Other, potentially more efficient methods might exist,
as the following discussion is based entirely on heuristic ap-
proaches.
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Fig. 7. Similar to Figure 5, but the position of the spectral channels were chosen with the optimization
technique based on the minimization of C matrix residuals.
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Fig. 7. Similar to Fig.5, but the positions of the spectral channels
were chosen with the optimization technique based on the mini-
mization ofC matrix residuals.

5.1 Equal sampling

Probably the most simple, while still reasonable, method to
construct spectral subsamples is to define the size of the sam-
ple and spread the channels evenly throughout the spectral
band. The reasoning behind this approach is to try to cover
as much variability in the spectral band while also employing
the high correlation of channels within a spectral interval.

Figure5shows this approach for three test cases that corre-
spond to the selection of every 500th, 200th, and 100th chan-
nel from the original simulations. The resulting first principal
component and the three first effective principle components
are shown in Fig.6.

5.2 Optimization based on random walks

While an equal sampling selection is simple and intuitive,
better results might be achieved using optimization tech-
niques. These can be distinguished by the minimized or max-
imized cost function and the technique employed for the op-
timization. While for this case it is straightforward to de-
fine various cost functions, choosing the optimization tech-
nique is more difficult. Commonly used techniques such as
the Newton or Levenberg–Marquardt algorithm are based on
computing first and second orders of partial derivatives of
the optimized cost function. Here, the position of selected
channels is to be optimized, and how to apply the standard
techniques to this problem does not seem straightforward.
The computation of derivatives is not necessary for random
walk techniques, which we apply to this problem using two
different cost functions.

The random walk starts from a selection of evenly dis-
tributed sampling points, and the random step is achieved by
adding a randomly chosen step to each position of a selected
channel. The maximum range of a random step is chosen to
be half the difference of the initial distribution. If a random
step leads to an improvement in the cost function, it is cho-
sen as the basis for the next step; otherwise the previous state
is used again for the next step. This procedure is repeated
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Fig. 8. Similar to Figure 6, but the optimization technique was used.
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Fig. 8.Similar to Fig.6, but the optimization technique was used.
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Fig. 9. Results of the mean reconstruction SNR for the three dis-
cussed spectral subset selection techniques.

several times, and a maximum number of possible step at-
tempts is prescribed.

Two cost functions appear naturally in this framework:

1. maximization of thel2 condition of L−1
λn,sP with re-

spect toλn: maxλn(κ(L−1
λn,sP )), where thel2 condition

κ of a matrixA is defined asκ(A) =‖ A−1
‖2 · ‖ A ‖2,

with ‖ A ‖2 being thel2 norm ofA, which is defined as
the square root of the largest eigenvalue of the matrix
product of the conjugate transpose ofA andA itself;

2. minimization of the sum of squares of the differ-
ence between the original coefficientsC−,SP and the

reconstructed ones: minλn

∑
i,j ((C−,SP )i,j − (P̃(λn) ·

L−1
λn,sP )i,j )

2.

Resulting spectral subsets using the minimization ofC
matrix residuals are shown in Fig.7 and the resulting prin-
cipal components in Fig.8, while results for all three tech-
niques are shown in Fig.9.

5.3 Discussion of the reconstruction SNR

Figure 9 shows a comparison of the mean reconstruction
SNR for the whole lookup table for the three discussed se-
lection techniques. From the selection of 30 spectral bands
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Fig. 10. Residuals between original and reconstructed spectra. The black line with the grey shaded area
shows the residual between the original spectra and the one reconstructed using the full spectral informa-
tion and 15 principal components. The red line shows the residual using only 9 spectral bands which were
selected using the equal sampling technique. The green line shows similar results, but the optimization
of C matrix residuals was used to select the spectral sample.
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Fig. 10.Residuals between original and reconstructed spectra. The
black line with the grey shaded area shows the residual between
the original spectra and the one reconstructed using the full spectral
information and 15 principal components. The red line shows the
residual using only 9 spectral bands, which were selected using the
equal sampling technique. The green line shows similar results, but
the optimization ofC matrix residuals was used to select the spectral
sample.

on, the techniques show only minor differences and are
hence equally well suited to solve the problem. Further-
more, the achieved mean reconstruction SNR is equal to
the results when using all available spectral bands (com-
pare with Fig.2). This shows that the highly correlated spec-
tra, when represented withnP = 15 principal components,
can be equally well represented with using only 30 selected
channels with already known hyperspectral principal com-
ponents. This behavior is similar to that shown in Fig.3.
There, the number of randomly selected state vector samples
approaches a number above which no increase of the recon-
struction SNR could be gained by increasing the sample size.
In that respect, the state vector sample and the spectral sam-
ple show quite similar behavior with respect to their sample
size.

For sample sizes below 30, the techniques show differ-
ences, with the least-squares minimization of theC matrix
residuals showing the best results. If one is willing to accept
a larger error by choosing a smaller spectral subsample, the
optimization methods are preferred. Using these techniques,
similar ranges of the reconstruction SNR can be achieved by
using only half of the spectral sample sizes.

One should note that the result for the equal sample se-
lection technique could be optimized by using more suited
borders of the spectral interval, but as a matter of fact the
results of the optimization techniques are quite similar and
might be of smaller importance for the solution of the overall
problem.

The effect of choosing different selection techniques is
demonstrated in Figs.10 and11, showing spectral residuals
for the used reconstruction techniques. If 23 spectral bands
are used, the results are similar, which corresponds to the
results shown in Fig.9. However, if fewer spectral channels
are used, significant differences are apparent. The equal sam-
ple technique shows much larger residuals in the 761 nm and
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Fig. 11. Similar to Figure 10, but 23 spectral bands were used.
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Fig. 11.Similar to Fig.10, but 23 spectral bands were used.
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Fig. 12. The grey area shows the reconstruction SNR histograms
for the original (i.e., using the full spectral information) reconstruc-
tion and two of the discussed reconstruction techniques using small
spectral subsamples. The dashed lines show results for the equal
sampling technique, while the lines show results for the selection
based on the minimization ofC matrix residuals. The colors indi-
cate the different size of the spectral subsamples.

slightly smaller errors elsewhere than theC matrix residual
minimization technique. This can be nicely explained with
the chosen spectral sampling (compare Figs.5 and7). The
optimization technique has an additional channel moved to
that spectral area to compensate for such errors.

Reconstruction SNR histograms for the discussed tech-
niques are shown in Fig.12. The optimum histogram is
reached for the case using 45 channels for both techniques.
A good representation of the optimal histogram is achieved
by using only 23 channels. For both cases the selection tech-
niques show similar results. Only for the case of using only
9 spectral bands, the optimized selection technique shows
much better results.

The main goal of this technique is to reduce the number
of radiative transfer calculations needed for a certain prob-
lem, which is clearly fulfilled. The achievable speedup how-
ever strongly depends on the problem. For a lookup-table-
like problem as discussed here, the speedup depends on the
number of states in the lookup tablenL, the number of states
used for the computation of the principal componentsns ,
the number of original wavelengthsnλ, and the size of the
spectral subsamplen. A speedup (sp) can be computed:

sp(nL,ns,nλ,n) =
nLnλ

ns · nλ + (nL − ns)n
. (8)
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Fig. 13. Shown are lines of constant speedup using the presented technique for the lookup table like
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Equation 8 was used to create the figure and the speedup for n= 30 and ns = 200 is highlighted.
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Fig. 13. Shown are lines of constant speedup using the presented
technique for the lookup-table-like problem as defined in Table1.
The speedup is presented as a function of the size of the chosen
spectral subsample and the size of the state space subsample used
for the computation of the principal components. Equation (8) was
used to create the figure, and the speedup forn = 30 andns = 200
is highlighted.

The speedup for the discussed lookup table is shown in
Fig. 13. It becomes evident that speedups of two orders of
magnitude are easily possible using this technique. A special
point in this figure unfolds if the additional error introduced
by this method is negligible. Figure2 shows that, from a se-
lection of several hundred spectra on, the mean reconstruc-
tion error reaches the limit controlled by the number of prin-
cipal components. Furthermore, Fig.9 shows that, from 30
channels on, the reconstruction error reaches its optimum.
For the discussed application of a lookup table, a speedup
of 120 comes at almost no cost of additional error. Further
speedup can be easily achieved, but introduces errors, which
have to be checked with the user requirements.

If the radiative transfer is used as a forward model in an
inverse problem and the time spent for the computations of
the hyperspectral principal is neglected, the speedup with al-
most no additional error is given by the ratio of the original
spectral resolution and the number of channels needed to re-
construct it; herenλ/n = 4500/30= 150.

6 Conclusions

The presented analysis shows that the presented spectral
subsampling technique could be employed to achieve ma-
jor speedups for hyperspectral radiative transfer simulations.
Its application to the oxygen A band showed that about 30
spectral channels are sufficient to reproduce the full hyper-
spectral data in a space spanned by 15 principal components.
This number will in general depend on the spectral domain
at which this method is applied, and for other domains the
validity of the method has to be proven again. However, this
is not a major drawback of the method. As it was shown, a
number of hyperspectral simulations have to be performed to
produce the principal components of the data set. From there,
one can establish the validity of the method and benefit from

major speedups. If the validity cannot be established, one has
to proceed using different techniques.

We want to highlight two of the main impacts of this tech-
nique for problems involving hyperspectral radiative trans-
fer. Firstly, formerly used techniques to gain speedups can be
revised. Such techniques could involve the reduction of the
vertical resolution of the model atmosphere, neglecting po-
larization, or only including certain orders of scattering. This
method could be used to avoid many of the simplifications
made with respect to strict solutions of the radiative transfer
equation, and thus to increase the radiative transfer calcula-
tion accuracy.

Secondly, this method enables a path to facilitate computa-
tionally costly radiative transfer simulations such as full 3-D
simulations including polarization. These models have even
more complexity in their state vector, including the descrip-
tion of a horizontally and vertically heterogeneous scene, and
they are much more demanding in terms of computation time
as compared to traditional 1-D methods. Hence, this method
could be used to employ 3-D radiative transfer for applica-
tions that depend on fast hyperspectral radiative transfer.

As a last point, we want to highlight that this method is
entirely based on post-processing techniques and requires no
changes in the used radiative transfer code. These are often
complex in their implementation and thus practically inac-
cessible for many users. The method is also simple enough
to be implemented with ease using modern interpreted
languages and high-level functions for the computation of
pseudo-inverses and principal component analysis.

Edited by: S. Schmidt
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