Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 2.989 IF 2.989
  • IF 5-year<br/> value: 3.489 IF 5-year
    3.489
  • CiteScore<br/> value: 3.37 CiteScore
    3.37
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
Atmos. Meas. Tech., 9, 5063-5075, 2016
http://www.atmos-meas-tech.net/9/5063/2016/
doi:10.5194/amt-9-5063-2016
© Author(s) 2016. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
17 Oct 2016
Airborne laser scan data: a valuable tool with which to infer weather radar partial beam blockage in urban environments
Roberto Cremonini1,3, Dmitri Moisseev1,4, and Venkatachalam Chandrasekar1,2 1Department of Physics, University of Helsinki, Helsinki, Finland
2Colorado State University, Fort Collins, Colorado, USA
3ARPA Piemonte, Dipartimento Sistemi Previsionali, Turin, Italy
4Finnish Meteorological Institute, Helsinki, Finland
Abstract. High-spatial-resolution weather radar observations are of primary relevance for hydrological applications in urban areas. However, when weather radars are located within metropolitan areas, partial beam blockages and clutter by buildings can seriously affect the observations. Standard simulations with simple beam propagation models and digital elevation models (DEMs) are usually not able to evaluate buildings' contribution to partial beam blockages. In recent years airborne laser scanners (ALSs) have evolved to the state-of-the-art technique for topographic data acquisition. Providing small footprint diameters (10–30 cm), ALS data allow accurate reconstruction of buildings and forest canopy heights. Analyzing the three weather C-band radars located in the metropolitan area of Helsinki, Finland, the present study investigates the benefits of using ALS data for quantitative estimations of partial beam blockages. The results obtained applying beam standard propagation models are compared with stratiform 24 h rainfall accumulation to evaluate the effects of partial beam blockages due to constructions and trees. To provide a physical interpretation of the results, the detailed analysis of beam occultations is achieved by open spatial data sets and open-source geographic information systems.

Citation: Cremonini, R., Moisseev, D., and Chandrasekar, V.: Airborne laser scan data: a valuable tool with which to infer weather radar partial beam blockage in urban environments, Atmos. Meas. Tech., 9, 5063-5075, doi:10.5194/amt-9-5063-2016, 2016.
Publications Copernicus
Download
Short summary
Although high-spatial-resolution weather radar observations are of primary relevance for urban hydrology, weather radar siting and characterization are challenging in an urban environment. Buildings, masts and trees cause partial beam blockages and clutter that seriously affect the observations. For the first time, this paper investigates the benefits of using airborne laser scanner (ALS) data for quantitative estimations of partial beam blockages in an urban environment.
Although high-spatial-resolution weather radar observations are of primary relevance for urban...
Share