Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 10, issue 3
Atmos. Meas. Tech., 10, 1229–1240, 2017
https://doi.org/10.5194/amt-10-1229-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Pushing the limits: The eXperimental Planetary boundary layer...

Atmos. Meas. Tech., 10, 1229–1240, 2017
https://doi.org/10.5194/amt-10-1229-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 30 Mar 2017

Research article | 30 Mar 2017

Validating precision estimates in horizontal wind measurements from a Doppler lidar

Rob K. Newsom et al.
Related authors  
Estimation of turbulence dissipation rate and its variability from sonic anemometer and wind Doppler lidar during the XPIA field campaign
Nicola Bodini, Julie K. Lundquist, and Rob K. Newsom
Atmos. Meas. Tech., 11, 4291–4308, https://doi.org/10.5194/amt-11-4291-2018,https://doi.org/10.5194/amt-11-4291-2018, 2018
Short summary
Identification of the cloud base height over the central Himalayan region: Intercomparison of Ceilometer and Doppler Lidar
K. K. Shukla, K. Niranjan Kumar, D. V. Phanikumar, R. K. Newsom, V. R. Kotamarthi, T. B. M. J. Ouarda, and M. V. Ratnam
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-162,https://doi.org/10.5194/amt-2016-162, 2016
Revised manuscript not accepted
Short summary
Related subject area  
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
A geometry-dependent surface Lambertian-equivalent reflectivity product for UV–Vis retrievals – Part 1: Evaluation over land surfaces using measurements from OMI at 466 nm
Wenhan Qin, Zachary Fasnacht, David Haffner, Alexander Vasilkov, Joanna Joiner, Nickolay Krotkov, Bradford Fisher, and Robert Spurr
Atmos. Meas. Tech., 12, 3997–4017, https://doi.org/10.5194/amt-12-3997-2019,https://doi.org/10.5194/amt-12-3997-2019, 2019
Short summary
On Study of Two-Dimensional Lunar Scan for Advanced Technology Microwave Sounder Geometric Calibration
Jun Zhou and Hu Yang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-177,https://doi.org/10.5194/amt-2019-177, 2019
Revised manuscript accepted for AMT
Short summary
Multistatic meteor radar observations of gravity wave-tidal interaction over Southern Australia
Andrew J. Spargo, Iain M. Reid, and Andrew D. MacKinnon
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-138,https://doi.org/10.5194/amt-2019-138, 2019
Revised manuscript accepted for AMT
Short summary
Retrieval of convective available potential energy from INSAT-3D measurements: comparison with radiosonde data and their spatial–temporal variations
Uriya Veerendra Murali Krishna, Subrata Kumar Das, Kizhathur Narasimhan Uma, and Govindan Pandithurai
Atmos. Meas. Tech., 12, 777–790, https://doi.org/10.5194/amt-12-777-2019,https://doi.org/10.5194/amt-12-777-2019, 2019
Short summary
Lidar temperature series in the middle atmosphere as a reference data set – Part 2: Assessment of temperature observations from MLS/Aura and SABER/TIMED satellites
Robin Wing, Alain Hauchecorne, Philippe Keckhut, Sophie Godin-Beekmann, Sergey Khaykin, and Emily M. McCullough
Atmos. Meas. Tech., 11, 6703–6717, https://doi.org/10.5194/amt-11-6703-2018,https://doi.org/10.5194/amt-11-6703-2018, 2018
Short summary
Cited articles  
Banakh, V. A. and Smalikho, I. N.: Estimation of turbulent energy dissipation rate from data of pulse Doppler lidar, Atmos. Ocean. Opt., 10, 957–965, 1997.
Browning, K. and Wexler, R.: The determination of kinematic properties of a wind field using Doppler radar, J. Appl. Meteorol., 7, 105–113, 1968.
Chai, T., Lin, C. L., and Newsom R. K.: Retrieval of Microscale Flow Structures from High Resolution Doppler Lidar using an Adjoint Model, J. Atmos. Sci., 61, 1500–1520, 2004.
Choukulkar, A., Pichugina, Y., Clack, C. T. M., Calhoun, R., Banta, R., Brewer, A., and Hardesty, M.: A new formulation for rotor equivalent wind speed for wind resource assessment and wind power forecasting, Wind Energy, 19, 1439–1452, 2016.
Clifton, A., Elliot, D., and Courtney, M.: IEA Wind RP 15 Ground-based vertically-profiling remote sensing for wind resource assessment, International Energy Agency, available at: https://www.ieawind.org/index_page_postings/RP/RP 2015_RemoteSensing_1stEd_8March2013.pdf (last access: 27 March 2017), 2013.
Publications Copernicus
Download
Notice on corrigendum

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Doppler lidars are remote sensing instruments that use infrared light to measure wind velocity in the lowest 2 to 3 km of the atmosphere. Quantifying the uncertainty in these measurements is crucial for applications ranging from wind resource assessment to model data assimilation. In this study, we evaluate three methods for estimating the random uncertainty by comparing the lidar wind measurements with nearly collocated in situ wind measurements at multiple levels on a tall tower.
Doppler lidars are remote sensing instruments that use infrared light to measure wind velocity...
Citation