Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 10, issue 3
Atmos. Meas. Tech., 10, 1269-1280, 2017
https://doi.org/10.5194/amt-10-1269-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 10, 1269-1280, 2017
https://doi.org/10.5194/amt-10-1269-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 30 Mar 2017

Research article | 30 Mar 2017

Tandem configuration of differential mobility and centrifugal particle mass analysers for investigating aerosol hygroscopic properties

Sergey S. Vlasenko et al.
Related authors  
Long-term measurements (2010–2014) of carbonaceous aerosol and carbon monoxide at the Zotino Tall Tower Observatory (ZOTTO) in central Siberia
Eugene F. Mikhailov, Svetlana Mironova, Gregory Mironov, Sergey Vlasenko, Alexey Panov, Xuguang Chi, David Walter, Samara Carbone, Paulo Artaxo, Martin Heimann, Jost Lavric, Ulrich Pöschl, and Meinrat O. Andreae
Atmos. Chem. Phys., 17, 14365-14392, https://doi.org/10.5194/acp-17-14365-2017,https://doi.org/10.5194/acp-17-14365-2017, 2017
Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign
E. F. Mikhailov, G. N. Mironov, C. Pöhlker, X. Chi, M. L. Krüger, M. Shiraiwa, J.-D. Förster, U. Pöschl, S. S. Vlasenko, T. I. Ryshkevich, M. Weigand, A. L. D. Kilcoyne, and M. O. Andreae
Atmos. Chem. Phys., 15, 8847-8869, https://doi.org/10.5194/acp-15-8847-2015,https://doi.org/10.5194/acp-15-8847-2015, 2015
Short summary
Related subject area  
Subject: Aerosols | Technique: Laboratory Measurement | Topic: Instruments and Platforms
Separation and detection of aqueous atmospheric aerosol mimics using supercritical fluid chromatography–mass spectrometry
Daisy N. Grace, Melissa B. Sebold, and Melissa M. Galloway
Atmos. Meas. Tech., 12, 3841-3851, https://doi.org/10.5194/amt-12-3841-2019,https://doi.org/10.5194/amt-12-3841-2019, 2019
Short summary
Humidity effects on the detection of soluble and insoluble nanoparticles in butanol operated condensation particle counters
Christian Tauber, Sophia Brilke, Peter Josef Wlasits, Paulus Salomon Bauer, Gerald Köberl, Gerhard Steiner, and Paul Martin Winkler
Atmos. Meas. Tech., 12, 3659-3671, https://doi.org/10.5194/amt-12-3659-2019,https://doi.org/10.5194/amt-12-3659-2019, 2019
Short summary
Structural changes of CAST soot during a thermal–optical measurement protocol
Theresa Haller, Christian Rentenberger, Jannik C. Meyer, Laura Felgitsch, Hinrich Grothe, and Regina Hitzenberger
Atmos. Meas. Tech., 12, 3503-3519, https://doi.org/10.5194/amt-12-3503-2019,https://doi.org/10.5194/amt-12-3503-2019, 2019
Short summary
Concept for an electrostatic focusing device for continuous ambient pressure aerosol concentration
Joseph L. Woo, Neha Sareen, Allison N. Schwier, and V. Faye McNeill
Atmos. Meas. Tech., 12, 3395-3402, https://doi.org/10.5194/amt-12-3395-2019,https://doi.org/10.5194/amt-12-3395-2019, 2019
Short summary
Two-wavelength thermal–optical determination of light-absorbing carbon in atmospheric aerosols
Dario Massabò, Alessandro Altomari, Virginia Vernocchi, and Paolo Prati
Atmos. Meas. Tech., 12, 3173-3182, https://doi.org/10.5194/amt-12-3173-2019,https://doi.org/10.5194/amt-12-3173-2019, 2019
Cited articles  
Alofs, D. J. and Balakumar, P.: Inversion to obtain aerosol size distributions from measurements with a differential mobility analyzer, J. Aerosol Sci., 13, 513–527, https://doi.org/10.1016/0021-8502(82)90017-9, 1982.
Andreae, M. O. and Rosenfeld, D.: Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89, 13–41, 2008.
Badger, C. L., George, I., Griffiths, P. T., Braban, C. F., Cox, R. A., and Abbatt, J. P. D.: Phase transitions and hygroscopic growth of aerosol particles containing humic acid and mixtures of humic acid and ammonium sulphate, Atmos. Chem. Phys., 6, 755–768, https://doi.org/10.5194/acp-6-755-2006, 2006.
Berg, O. H., Swietlicki, E., and Krejci, R.: Hygroscopic growth of aerosol particles in the marine boundary layer over the Pacific and Southern oceans during the First Aerosol Characterization Experiment (ACE I), J. Geophys. Res., 103, 16535–16534, https://doi.org/10.1029/97JD02851, 1998.
Biskos, G., Paulsen, D., Russell, L. M., Buseck, P. R., and Martin, S. T.: Prompt deliquescence and efflorescence of aerosol nanoparticles, Atmos. Chem. Phys., 6, 4633–4642, https://doi.org/10.5194/acp-6-4633-2006, 2006a.
Publications Copernicus
Download
Short summary
The paper describes a new technique for measuring the hygroscopic properties of laboratory and ambient aerosols. The direct measurements of humidified particle mass allow avoiding complications that occur in the commonly used technique due to poorly defined particle morphology and density. Both test results and field measurements have shown that the system can be applied for aerosol size-resolved mass growth factor measurements in hydration and dehydration modes up to 95 % RH.
The paper describes a new technique for measuring the hygroscopic properties of laboratory and...
Citation