Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year
    3.650
  • CiteScore value: 3.37 CiteScore
    3.37
  • SNIP value: 1.253 SNIP 1.253
  • IPP value: 3.29 IPP 3.29
  • SJR value: 1.869 SJR 1.869
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 60 Scimago H
    index 60
  • h5-index value: 47 h5-index 47
Volume 10, issue 4
Atmos. Meas. Tech., 10, 1539-1555, 2017
https://doi.org/10.5194/amt-10-1539-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 10, 1539-1555, 2017
https://doi.org/10.5194/amt-10-1539-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 24 Apr 2017

Research article | 24 Apr 2017

Updated MISR dark water research aerosol retrieval algorithm – Part 1: Coupled 1.1 km ocean surface chlorophyll a retrievals with empirical calibration corrections

James A. Limbacher and Ralph A. Kahn
Related authors  
Updated MISR over-water research aerosol retrieval algorithm – Part 2: A multi-angle aerosol retrieval algorithm for shallow, turbid, oligotrophic, and eutrophic waters
James A. Limbacher and Ralph A. Kahn
Atmos. Meas. Tech., 12, 675-689, https://doi.org/10.5194/amt-12-675-2019,https://doi.org/10.5194/amt-12-675-2019, 2019
Short summary
Constraining chemical transport PM2.5 modeling outputs using surface monitor measurements and satellite retrievals: application over the San Joaquin Valley
Mariel D. Friberg, Ralph A. Kahn, James A. Limbacher, K. Wyat Appel, and James A. Mulholland
Atmos. Chem. Phys., 18, 12891-12913, https://doi.org/10.5194/acp-18-12891-2018,https://doi.org/10.5194/acp-18-12891-2018, 2018
Short summary
Related subject area  
Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Joint retrieval of surface reflectance and aerosol properties with continuous variation of the state variables in the solution space – Part 2: application to geostationary and polar-orbiting satellite observations
Marta Luffarelli and Yves Govaerts
Atmos. Meas. Tech., 12, 791-809, https://doi.org/10.5194/amt-12-791-2019,https://doi.org/10.5194/amt-12-791-2019, 2019
Short summary
Updated MISR over-water research aerosol retrieval algorithm – Part 2: A multi-angle aerosol retrieval algorithm for shallow, turbid, oligotrophic, and eutrophic waters
James A. Limbacher and Ralph A. Kahn
Atmos. Meas. Tech., 12, 675-689, https://doi.org/10.5194/amt-12-675-2019,https://doi.org/10.5194/amt-12-675-2019, 2019
Short summary
Technical note: Absorption aerosol optical depth components from AERONET observations of mixed dust plumes
Sung-Kyun Shin, Matthias Tesche, Detlef Müller, and Youngmin Noh
Atmos. Meas. Tech., 12, 607-618, https://doi.org/10.5194/amt-12-607-2019,https://doi.org/10.5194/amt-12-607-2019, 2019
Short summary
Simultaneous observations by sky radiometer and MAX-DOAS for characterization of biomass burning plumes in central Thailand in January–April 2016
Hitoshi Irie, Hossain Mohammed Syedul Hoque, Alessandro Damiani, Hiroshi Okamoto, Al Mashroor Fatmi, Pradeep Khatri, Tamio Takamura, and Thanawat Jarupongsakul
Atmos. Meas. Tech., 12, 599-606, https://doi.org/10.5194/amt-12-599-2019,https://doi.org/10.5194/amt-12-599-2019, 2019
Short summary
Minimizing aerosol effects on the OMI tropospheric NO2 retrieval – An improved use of the 477 nm O2 − O2 band and an estimation of the aerosol correction uncertainty
Julien Chimot, J. Pepijn Veefkind, Johan F. de Haan, Piet Stammes, and Pieternel F. Levelt
Atmos. Meas. Tech., 12, 491-516, https://doi.org/10.5194/amt-12-491-2019,https://doi.org/10.5194/amt-12-491-2019, 2019
Short summary
Cited articles  
Atlas, R., Hoffman, R. N., Ardizzone, J., Leidner, S. M., Jusem, J. C., Smith, D. K., and Gombos, D.: A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications, B. Am. Meteorol. Soc., 92, 157–174, https://doi.org/10.1175/2010BAMS2946.1, 2011.
Bailey, S. W. and Werdell, P. J.: A multi-sensor approach for the on-orbit validation of ocean color satellite data products, Remote Sens. Environ., 102, 12–23, 2006.
Barrot, G., Mangin, A., and Pinnock, S.: GlobColour Product User Guide, available at: http://www.globcolour.info (last access: 31 January 2014), 2010.
Bruegge, C. J., Diner, D. J., Korechoff, R. P., and Lee, M.: MISR Level 1 Radiance Scaling and Conditioning Algorithm Theoretical Basis. Jet Propulsion Laboratory JPL D-11507, available at: https://eospso.nasa.gov/sites/default/files/atbd/atbd-misr-01.pdf (last access: 13 April 2017), 1999.
Publications Copernicus
Short summary
Aerosol amount and type affect the “atmospheric correction” needed to derive ocean surface chlorophyll a concentration (Chl) from satellite remote sensing and, conversely, the ocean surface representation affects aerosol retrieval products. We introduce a coupled atmosphere-surface retrieval for Multi-angle Imaging SpectroRadiometer observations over dark water aimed at improving both aerosol and Chl results. We also refine the MISR calibration, critical to achieving high-quality retrievals.
Aerosol amount and type affect the “atmospheric correction” needed to derive ocean surface...
Citation