Articles | Volume 10, issue 5
https://doi.org/10.5194/amt-10-1739-2017
https://doi.org/10.5194/amt-10-1739-2017
Research article
 | 
10 May 2017
Research article |  | 10 May 2017

Wind turbine impact on operational weather radar I/Q data: characterisation and filtering

Lars Norin

Related authors

Observations of anomalous propagation over waters near Sweden
Lars Norin
Atmos. Meas. Tech., 16, 1789–1801, https://doi.org/10.5194/amt-16-1789-2023,https://doi.org/10.5194/amt-16-1789-2023, 2023
Short summary
The sensitivity of snowfall to weather states over Sweden
Lars Norin, Abhay Devasthale, and Tristan S. L'Ecuyer
Atmos. Meas. Tech., 10, 3249–3263, https://doi.org/10.5194/amt-10-3249-2017,https://doi.org/10.5194/amt-10-3249-2017, 2017
Short summary
Intercomparison of snowfall estimates derived from the CloudSat Cloud Profiling Radar and the ground-based weather radar network over Sweden
L. Norin, A. Devasthale, T. S. L'Ecuyer, N. B. Wood, and M. Smalley
Atmos. Meas. Tech., 8, 5009–5021, https://doi.org/10.5194/amt-8-5009-2015,https://doi.org/10.5194/amt-8-5009-2015, 2015
Short summary
A quantitative analysis of the impact of wind turbines on operational Doppler weather radar data
L. Norin
Atmos. Meas. Tech., 8, 593–609, https://doi.org/10.5194/amt-8-593-2015,https://doi.org/10.5194/amt-8-593-2015, 2015
Short summary
The large-scale spatio-temporal variability of precipitation over Sweden observed from the weather radar network
A. Devasthale and L. Norin
Atmos. Meas. Tech., 7, 1605–1617, https://doi.org/10.5194/amt-7-1605-2014,https://doi.org/10.5194/amt-7-1605-2014, 2014

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Observations of anomalous propagation over waters near Sweden
Lars Norin
Atmos. Meas. Tech., 16, 1789–1801, https://doi.org/10.5194/amt-16-1789-2023,https://doi.org/10.5194/amt-16-1789-2023, 2023
Short summary
Validation of Aeolus wind profiles using ground-based lidar and radiosonde observations at Réunion island and the Observatoire de Haute-Provence
Mathieu Ratynski, Sergey Khaykin, Alain Hauchecorne, Robin Wing, Jean-Pierre Cammas, Yann Hello, and Philippe Keckhut
Atmos. Meas. Tech., 16, 997–1016, https://doi.org/10.5194/amt-16-997-2023,https://doi.org/10.5194/amt-16-997-2023, 2023
Short summary
Dual-frequency spectral radar retrieval of snowfall microphysics: a physics-driven deep-learning approach
Anne-Claire Billault-Roux, Gionata Ghiggi, Louis Jaffeux, Audrey Martini, Nicolas Viltard, and Alexis Berne
Atmos. Meas. Tech., 16, 911–940, https://doi.org/10.5194/amt-16-911-2023,https://doi.org/10.5194/amt-16-911-2023, 2023
Short summary
High-resolution 3D winds derived from a modified WISSDOM synthesis scheme using multiple Doppler lidars and observations
Chia-Lun Tsai, Kwonil Kim, Yu-Chieng Liou, and GyuWon Lee
Atmos. Meas. Tech., 16, 845–869, https://doi.org/10.5194/amt-16-845-2023,https://doi.org/10.5194/amt-16-845-2023, 2023
Short summary
Atmospheric boundary layer height from ground-based remote sensing: a review of capabilities and limitations
Simone Kotthaus, Juan Antonio Bravo-Aranda, Martine Collaud Coen, Juan Luis Guerrero-Rascado, Maria João Costa, Domenico Cimini, Ewan J. O'Connor, Maxime Hervo, Lucas Alados-Arboledas, María Jiménez-Portaz, Lucia Mona, Dominique Ruffieux, Anthony Illingworth, and Martial Haeffelin
Atmos. Meas. Tech., 16, 433–479, https://doi.org/10.5194/amt-16-433-2023,https://doi.org/10.5194/amt-16-433-2023, 2023
Short summary

Cited articles

Aarholt, E. and Jackson, C. A.: Wind farm Gapfiller concept solution, in: Proceedings of the seventh European Radar Conference, Paris, France, 236–239, 2010.
Angulo, I., Grande, O., Jenn, D., Guerra, D., and de la Vega, D.: Estimating reflectivity values from wind turbines for analyzing the potential impact on weather radar services, Atmos. Meas. Tech., 8, 2183–2193, https://doi.org/10.5194/amt-8-2183-2015, 2015.
Bachmann, S., Al-Rashid, Y., Bronecke, P., Palmer, R., and Isom, B.: Suppression of the windfarm contribution from the atmospheric radar returns, in: Proceedings of the 26th Conference on Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology, American Meteorological Society, Atlanta, GA, USA, 81–86, 2010a.
Bachmann, S., Al-Rashid, Y., Isom, B., and Palmer, R.: Radar and Windfarms – mitigating negative effects through signal processing, in: Proceedings of the sixth European Conference on Radar in Meteorology and Hydrology, Sibiu, Romania, 81–86, 2010b.
Bacon, D. F.: Fixed-link wind-turbine exclusion zone method, Tech. rep., Radiocommunications Agency, 2002.
Download
Short summary
Wind turbines in the line of sight of a weather radar can have a negative impact on the quality of the radar's measurements. Wind turbine echoes have proven difficult to filter due to their complex and time-varying nature. In this work we present recordings of high-resolution low-level data from a Swedish weather radar. A characteristic and robust signature from wind turbines is found. A simple wind turbine filter is presented and applied to the recorded data.