Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.089 IF 3.089
  • IF 5-year<br/> value: 3.700 IF 5-year
    3.700
  • CiteScore<br/> value: 3.59 CiteScore
    3.59
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
Atmos. Meas. Tech., 10, 1893-1909, 2017
https://doi.org/10.5194/amt-10-1893-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
30 May 2017
Pathfinder: applying graph theory to consistent tracking of daytime mixed layer height with backscatter lidar
Marco de Bruine1,2, Arnoud Apituley1, David Patrick Donovan1, Hendrik Klein Baltink1, and Marijn Jorrit de Haij1 1Royal Netherlands Meteorological Institute (KNMI), Utrechtseweg 297, 3731 GA De Bilt, the Netherlands
2Institute for Marine and Atmospheric Research (IMAU), Utrecht University, Utrecht, the Netherlands
Abstract. The height of the atmospheric boundary layer or mixing layer is an important parameter for understanding the dynamics of the atmosphere and the dispersion of trace gases and air pollution. The height of the mixing layer (MLH) can be retrieved, among other methods, from lidar or ceilometer backscatter data. These instruments use the vertical backscatter lidar signal to infer MLHL, which is feasible because the main sources of aerosols are situated at the surface and vertical gradients are expected to go from the aerosol loaded mixing layer close to the ground to the cleaner free atmosphere above. Various lidar/ceilometer algorithms are currently applied, but accounting for MLH temporal development is not always well taken care of. As a result, MLHL retrievals may jump between different atmospheric layers, rather than reliably track true MLH development over time. This hampers the usefulness of MLHL time series, e.g. for process studies, model validation/verification and climatology. Here, we introduce a new method pathfinder, which applies graph theory to simultaneously evaluate time frames that are consistent with scales of MLH dynamics, leading to coherent tracking of MLH. Starting from a grid of gradients in the backscatter profiles, MLH development is followed using Dijkstra's shortest path algorithm (Dijkstra, 1959). Locations of strong gradients are connected under the condition that subsequent points on the path are limited to a restricted vertical range. The search is further guided by rules based on the presence of clouds and residual layers. After being applied to backscatter lidar data from Cabauw, excellent agreement is found with wind profiler retrievals for a 12-day period in 2008 (R2 =  0.90) and visual judgment of lidar data during a full year in 2010 (R2 =  0.96). These values compare favourably to other MLHL methods applied to the same lidar data set and corroborate more consistent MLH tracking by pathfinder.

Citation: de Bruine, M., Apituley, A., Donovan, D. P., Klein Baltink, H., and de Haij, M. J.: Pathfinder: applying graph theory to consistent tracking of daytime mixed layer height with backscatter lidar, Atmos. Meas. Tech., 10, 1893-1909, https://doi.org/10.5194/amt-10-1893-2017, 2017.
Publications Copernicus
Download
Short summary
To know how air pollution moves away from their sources, we need to know the height of the pollution. We use a laser instrument that detects particles of air pollution to precisely measure the height of the particles. Now we want to detect the layer where the pollution is. As the height of this layer changes with time it is difficult to automatically follow the correct layer. Pathfinder, which works like route planners that find the shortest way, improves this task.
To know how air pollution moves away from their sources, we need to know the height of the...
Share