Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 10, issue 5
Atmos. Meas. Tech., 10, 1893-1909, 2017
https://doi.org/10.5194/amt-10-1893-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 10, 1893-1909, 2017
https://doi.org/10.5194/amt-10-1893-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 30 May 2017

Research article | 30 May 2017

Pathfinder: applying graph theory to consistent tracking of daytime mixed layer height with backscatter lidar

Marco de Bruine et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Publications Copernicus
Download
Short summary
To know how air pollution moves away from their sources, we need to know the height of the pollution. We use a laser instrument that detects particles of air pollution to precisely measure the height of the particles. Now we want to detect the layer where the pollution is. As the height of this layer changes with time it is difficult to automatically follow the correct layer. Pathfinder, which works like route planners that find the shortest way, improves this task.
To know how air pollution moves away from their sources, we need to know the height of the...
Citation