Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year
    3.650
  • CiteScore value: 3.37 CiteScore
    3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 60 Scimago H
    index 60
Volume 10, issue 5
Atmos. Meas. Tech., 10, 1893-1909, 2017
https://doi.org/10.5194/amt-10-1893-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 10, 1893-1909, 2017
https://doi.org/10.5194/amt-10-1893-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 30 May 2017

Research article | 30 May 2017

Pathfinder: applying graph theory to consistent tracking of daytime mixed layer height with backscatter lidar

Marco de Bruine et al.
Related authors  
Age of air as a diagnostic for transport timescales in global models
Maarten Krol, Marco de Bruine, Lars Killaars, Huug Ouwersloot, Andrea Pozzer, Yi Yin, Frederic Chevallier, Philippe Bousquet, Prabir Patra, Dmitry Belikov, Shamil Maksyutov, Sandip Dhomse, Wuhu Feng, and Martyn P. Chipperfield
Geosci. Model Dev., 11, 3109-3130, https://doi.org/10.5194/gmd-11-3109-2018,https://doi.org/10.5194/gmd-11-3109-2018, 2018
Short summary
The impact of precipitation evaporation on the atmospheric aerosol distribution in EC-Earth v3.2.0
Marco de Bruine, Maarten Krol, Twan van Noije, Philippe Le Sager, and Thomas Röckmann
Geosci. Model Dev., 11, 1443-1465, https://doi.org/10.5194/gmd-11-1443-2018,https://doi.org/10.5194/gmd-11-1443-2018, 2018
Short summary
Evaluation of column-averaged methane in models and TCCON with a focus on the stratosphere
Andreas Ostler, Ralf Sussmann, Prabir K. Patra, Sander Houweling, Marko De Bruine, Gabriele P. Stiller, Florian J. Haenel, Johannes Plieninger, Philippe Bousquet, Yi Yin, Marielle Saunois, Kaley A. Walker, Nicholas M. Deutscher, David W. T. Griffith, Thomas Blumenstock, Frank Hase, Thorsten Warneke, Zhiting Wang, Rigel Kivi, and John Robinson
Atmos. Meas. Tech., 9, 4843-4859, https://doi.org/10.5194/amt-9-4843-2016,https://doi.org/10.5194/amt-9-4843-2016, 2016
Short summary
Related subject area  
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Investigation of observational error sources in multi-Doppler-radar three-dimensional variational vertical air motion retrievals
Mariko Oue, Pavlos Kollias, Alan Shapiro, Aleksandra Tatarevic, and Toshihisa Matsui
Atmos. Meas. Tech., 12, 1999-2018, https://doi.org/10.5194/amt-12-1999-2019,https://doi.org/10.5194/amt-12-1999-2019, 2019
Short summary
Better turbulence spectra from velocity–azimuth display scanning wind lidar
Felix Kelberlau and Jakob Mann
Atmos. Meas. Tech., 12, 1871-1888, https://doi.org/10.5194/amt-12-1871-2019,https://doi.org/10.5194/amt-12-1871-2019, 2019
Short summary
The use of GNSS zenith total delays in operational AROME/Hungary 3D-Var over a central European domain
Máté Mile, Patrik Benáček, and Szabolcs Rózsa
Atmos. Meas. Tech., 12, 1569-1579, https://doi.org/10.5194/amt-12-1569-2019,https://doi.org/10.5194/amt-12-1569-2019, 2019
Short summary
Application of the Fengyun 3 C GNSS occultation sounder for assessing the global ionospheric response to a magnetic storm event
Weihua Bai, Guojun Wang, Yueqiang Sun, Jiankui Shi, Guanglin Yang, Xiangguang Meng, Dongwei Wang, Qifei Du, Xianyi Wang, Junming Xia, Yuerong Cai, Congliang Liu, Wei Li, Chunjun Wu, Danyang Zhao, Di Wu, and Cheng Liu
Atmos. Meas. Tech., 12, 1483-1493, https://doi.org/10.5194/amt-12-1483-2019,https://doi.org/10.5194/amt-12-1483-2019, 2019
Short summary
Development of time-varying global gridded TsTm model for precise GPS–PWV retrieval
Peng Jiang, Shirong Ye, Yinhao Lu, Yanyan Liu, Dezhong Chen, and Yanlan Wu
Atmos. Meas. Tech., 12, 1233-1249, https://doi.org/10.5194/amt-12-1233-2019,https://doi.org/10.5194/amt-12-1233-2019, 2019
Short summary
Cited articles  
Angevine, W. M., White, A. B., and Avery, S. K.: Boundary-layer depth and entrainment zone characterization with a boundary-layer profiler, Bound.-Lay. Meteorol., 68, 375–385, https://doi.org/10.1007/BF00706797, 1994.
Apituley, A., Russchenberg, H., van der Marel, H., Boers, R., ten Brink, H., de Leeuw, G., Uijlenhoet, R., Arbresser-Rastburg, B., and Röckmann, T.: Overview Of Research And Networking With Ground Based Remote Sensing For Atmospheric Profiling At The Cabauw Experimental Site For Atmospheric Research (CESAR) – The Netherlands, in: Proceedings IGARSS 2008, Boston, Massachusetts, III, 903–906, 2008.
Baars, H., Ansmann, A., Engelmann, R., and Althausen, D.: Continuous monitoring of the boundary-layer top with lidar, Atmos. Chem. Phys., 8, 7281–7296, https://doi.org/10.5194/acp-8-7281-2008, 2008.
Baltink, H. K.: CESAR-database, available at: http://www.cesar-database.nl (last access: 25 May 2017), 2016.
Beyrich, F.: Mixing-height estimation in the convective boundary layer using sodar data, Bound.-Lay. Meteorol., 74, 1–18, https://doi.org/10.1007/BF00715708, 1995.
Publications Copernicus
Download
Short summary
To know how air pollution moves away from their sources, we need to know the height of the pollution. We use a laser instrument that detects particles of air pollution to precisely measure the height of the particles. Now we want to detect the layer where the pollution is. As the height of this layer changes with time it is difficult to automatically follow the correct layer. Pathfinder, which works like route planners that find the shortest way, improves this task.
To know how air pollution moves away from their sources, we need to know the height of the...
Citation