Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 10, issue 6 | Copyright

Special issue: Twenty-five years of operations of the Network for the Detection...

Atmos. Meas. Tech., 10, 2021-2043, 2017
https://doi.org/10.5194/amt-10-2021-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 07 Jun 2017

Research article | 07 Jun 2017

Methods to homogenize electrochemical concentration cell (ECC) ozonesonde measurements across changes in sensing solution concentration or ozonesonde manufacturer

Terry Deshler1, Rene Stübi2, Francis J. Schmidlin3, Jennifer L. Mercer1,a, Herman G. J. Smit4, Bryan J. Johnson5, Rigel Kivi6, and Bruno Nardi1,7 Terry Deshler et al.
  • 1Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming, USA
  • 2Meteo Swiss, Payerne, Switzerland
  • 3NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
  • 4Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research: Troposphere, Jülich, Germany
  • 5National Oceanic and Atmospheric Administration, Boulder, Colorado, USA
  • 6Finnish Meteorological Institute, Arctic Research, Sodankylä, Finland
  • 7Nardi Scientific, LLC, Denver, Colorado, USA
  • anow at: National Science Foundation, Geosciences Directorate, Division of Polar Programs, Arlington, Virginia, USA

Abstract. Ozone plays a significant role in the chemical and radiative state of the atmosphere. For this reason there are many instruments used to measure ozone from the ground, from space, and from balloons. Balloon-borne electrochemical cell ozonesondes provide some of the best measurements of the ozone profile up to the mid-stratosphere, providing high vertical resolution, high precision, and a wide geographic distribution. From the mid-1990s to the late 2000s the consistency of long-term records from balloon-borne ozonesondes has been compromised by differences in manufacturers, Science Pump (SP) and ENSCI (EN), and differences in recommended sensor solution concentrations, 1.0% potassium iodide (KI) and the one-half dilution: 0.5%. To investigate these differences, a number of organizations have independently undertaken comparisons of the various ozonesonde types and solution concentrations, resulting in 197 ozonesonde comparison profiles. The goal of this study is to derive transfer functions to allow measurements outside of standard recommendations, for sensor composition and ozonesonde type, to be converted to a standard measurement and thus homogenize the data to the expected accuracy of 5% (10%) in the stratosphere (troposphere). Subsets of these data have been analyzed previously and intermediate transfer functions derived. Here all the comparison data are analyzed to compare (1) differences in sensor solution composition for a single ozonesonde type, (2) differences in ozonesonde type for a single sensor solution composition, and (3) the World Meteorological Organization's (WMO) and manufacturers' recommendations of 1.0% KI solution for Science Pump and 0.5% KI for ENSCI. From the recommendations it is clear that ENSCI ozonesondes and 1.0% KI solution result in higher amounts of ozone sensed. The results indicate that differences in solution composition and in ozonesonde type display little pressure dependence at pressures  ≥ 30hPa, and thus the transfer function can be characterized as a simple ratio of the less sensitive to the more sensitive method. This ratio is 0.96 for both solution concentration and ozonesonde type. The ratios differ at pressures <30hPa such that OZ0. 5%/OZ1. 0 % =  0. 90 + 0. 041 ⋅ log10(p) and OZSciencePump/OZENSCI =  0. 764 + 0. 133 ⋅ log10(p) for p in units of hPa. For the manufacturer-recommended solution concentrations the dispersion of the ratio (SP-1.0/EN-0.5%), while significant, is generally within 3% and centered near 1.0, such that no changes are recommended. For stations which have used multiple ozonesonde types with solution concentrations different from the WMO's and manufacturer's recommendations, this work suggests that a reasonably homogeneous data set can be created if the quantitative relationships specified above are applied to the non-standard measurements. This result is illustrated here in an application to the Nairobi data set.

Download & links
Publications Copernicus
Special issue
Download
Short summary
Ozonesondes, small balloon-borne instruments to measure ozone profiles, are used once and lost. Quality control is thus essential. From the mid-1990s to late 2000s differences in manufacturers' (Science Pump and ENSCI) recommended sensor solution concentrations, 1.0 % and 0.5 % potassium iodide, led to some confusion. This paper uses comparison measurements to derive transfer functions to homogenize the measurements made with non-standard combinations of instrument and sensor solution.
Ozonesondes, small balloon-borne instruments to measure ozone profiles, are used once and lost....
Citation
Share