Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 10, issue 6 | Copyright
Atmos. Meas. Tech., 10, 2105-2116, 2017
https://doi.org/10.5194/amt-10-2105-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 08 Jun 2017

Research article | 08 Jun 2017

Differences in liquid cloud droplet effective radius and number concentration estimates between MODIS collections 5.1 and 6 over global oceans

John Rausch1, Kerry Meyer2, Ralf Bennartz1,3, and Steven Platnick2 John Rausch et al.
  • 1Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN 37235, USA
  • 2NASA Goddard Space Flight Center, Greenbelt, Maryland, 20771, USA
  • 3Space Science and Engineering Center, University of Wisconsin, Madison, Madison, WI 53706, USA

Abstract. Differences in cloud droplet effective radius and cloud droplet number concentration (CDNC) estimates inferred from the Aqua–MODIS (Moderate Resolution Imaging Spectroradiometer) collections 5.1 (C5.1) and 6 (C6) cloud products (MYD06) are examined for warm clouds over global oceans for the year 2008. Individual pixel level retrievals for both collections are aggregated to 1° × 1° and compared globally and regionally for the three main spectral channel pairs used for MODIS cloud optical property retrievals. Comparisons between both collections are performed for cases in which all three effective radii retrievals are classified by the MODIS cloud product as valid. The contribution to the observed differences of several key MYD06 Collection 6 algorithm updates are also explored, with a focus on changes to the surface reflectance model, assumed solar irradiance, above-cloud emission, cloud-top pressure (CTP), and pixel registration. Global results show a neutral to positive (>50cm−3) change for C6-derived CDNC relative to C5.1 for the 1.6 and 2.1µm channel retrievals, corresponding to a neutral to −2µm difference in droplet effective radius (re). For 3.7µm retrievals, CDNC results show a negative change in the tropics, with differences transitioning toward positive values with increasing latitude spanning −25 to +50cm−3 related to a +2.5 to −1µm transition in effective radius. Cloud optical thickness (τ) differences were small relative to effective radius and found to not significantly impact CDNC estimates. Regionally, the magnitude and behavior of the annual CDNC cycle are compared for each effective radius retrieval. Results from this study indicate significant inter-collection differences in aggregated values of effective radius due to changes to the precomputed retrieval lookup tables (LUTs) for ocean scenes, changes to retrieved cloud-top pressure, solar irradiance, or above-cloud thermal emission, depending upon spectral channel. The observed differences between collections may have implications for existing MODIS-derived climatologies and validation studies of effective radius and CDNC.

Publications Copernicus
Download
Short summary
This paper documents the observed differences in the aggregated (Level-3) cloud droplet effective radius and droplet number concentration estimates inferred from the Aqua–MODIS cloud product collections 5.1 and 6 for warm oceanic cloud scenes over the year 2008. We note significant differences in effective radius and droplet concentration between the two products and discuss the algorithmic and calibration changes which may contribute to observed results.
This paper documents the observed differences in the aggregated (Level-3) cloud droplet...
Citation
Share