Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 10, issue 6 | Copyright

Special issue: Advanced Global Navigation Satellite Systems tropospheric...

Atmos. Meas. Tech., 10, 2183-2208, 2017
https://doi.org/10.5194/amt-10-2183-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 12 Jun 2017

Research article | 12 Jun 2017

Inter-technique validation of tropospheric slant total delays

Michal Kačmařík1, Jan Douša2, Galina Dick3, Florian Zus3, Hugues Brenot4, Gregor Möller5, Eric Pottiaux6, Jan Kapłon7, Paweł Hordyniec7, Pavel Václavovic2, and Laurent Morel8 Michal Kačmařík et al.
  • 1Institute of Geoinformatics, VŠB – Technical University of Ostrava, Ostrava, Czech Republic
  • 2Geodetic Observatory Pecný, Research Institute of Geodesy, Topography and Cartography, Zdiby, Czech Republic
  • 3GFZ German Research Centre for Geosciences, Potsdam, Germany
  • 4Atmospheric Composition Department, Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
  • 5Department of Geodesy and Geoinformation, Vienna University of Technology, Vienna, Austria
  • 6Royal Observatory of Belgium, Brussels, Belgium
  • 7Institute of Geodesy and Geoinformatics, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
  • 8GeF Laboratory, ESGT – CNAM, Le Mans, France

Abstract. An extensive validation of line-of-sight tropospheric slant total delays (STD) from Global Navigation Satellite Systems (GNSS), ray tracing in numerical weather prediction model (NWM) fields and microwave water vapour radiometer (WVR) is presented. Ten GNSS reference stations, including collocated sites, and almost 2 months of data from 2013, including severe weather events were used for comparison. Seven institutions delivered their STDs based on GNSS observations processed using 5 software programs and 11 strategies enabling to compare rather different solutions and to assess the impact of several aspects of the processing strategy. STDs from NWM ray tracing came from three institutions using three different NWMs and ray-tracing software. Inter-techniques evaluations demonstrated a good mutual agreement of various GNSS STD solutions compared to NWM and WVR STDs. The mean bias among GNSS solutions not considering post-fit residuals in STDs was −0.6mm for STDs scaled in the zenith direction and the mean standard deviation was 3.7mm. Standard deviations of comparisons between GNSS and NWM ray-tracing solutions were typically 10mm±2mm (scaled in the zenith direction), depending on the NWM model and the GNSS station. Comparing GNSS versus WVR STDs reached standard deviations of 12mm±2mm also scaled in the zenith direction. Impacts of raw GNSS post-fit residuals and cleaned residuals on optimal reconstructing of GNSS STDs were evaluated at inter-technique comparison and for GNSS at collocated sites. The use of raw post-fit residuals is not generally recommended as they might contain strong systematic effects, as demonstrated in the case of station LDB0. Simplified STDs reconstructed only from estimated GNSS tropospheric parameters, i.e. without applying post-fit residuals, performed the best in all the comparisons; however, it obviously missed part of tropospheric signals due to non-linear temporal and spatial variations in the troposphere. Although the post-fit residuals cleaned of visible systematic errors generally showed a slightly worse performance, they contained significant tropospheric signal on top of the simplified model. They are thus recommended for the reconstruction of STDs, particularly during high variability in the troposphere. Cleaned residuals also showed a stable performance during ordinary days while containing promising information about the troposphere at low-elevation angles.

Publications Copernicus
Special issue
Download
Citation
Share