Supplement of

Controlled nitric oxide production via O(\(^{1}\text{D}\)) + N\(_{2}\)O reactions for use in oxidation flow reactor studies

Andrew Lambe et al.

Correspondence to: Andrew Lambe (lambe@aerodyne.com) and William Brune (whb2@psu.edu)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.
Figure S1. Nitric oxide (NO) depletion inside the NO analyzer due to reaction of 50 ppb initial NO ([NO]i) with O3. NO was introduced from a calibration cylinder, and O3 was introduced from the output of the PAM reactor.

\[
\ln\left(\frac{[\text{NO}]}{[\text{NO}]_i}\right) = -0.0833 - 0.550*[\text{O}_3] \\
R^2 = 0.996
\]

Figure S2. Modeled steady-state (a) NO:HO2, and (b) OH:NO3 as a function of [N2O] input to the PAM reactor with mean residence time = 80 sec for: low, medium, and high \(I_{254} = 0.032 \times 10^{15}, 0.64 \times 10^{15} \text{ and } 6.4 \times 10^{15} \text{ ph cm}^{-2} \text{ sec}, \) respectively, at fixed \([H_2O] = 1\% \text{ and } [O_3] = 5 \text{ ppm}.\)
Figure S3. Modeled steady-state (a) NO, (b) NO:HO₂, and (c) OH:NO₃ as a function of [N₂O] input to the PAM reactor with mean residence time = 80 sec for: low, medium, and high [O₃] = 0.5, 5, and 50 ppm respectively, at fixed [H₂O] = 1% and I₂54 = 6.4×10¹⁵ ph cm⁻² s⁻¹.
Figure S4. Modeled steady-state (a) NO, (b) NO:HO₂, and (c) OH:NO₃ as a function of input [N₂O] in the PAM oxidation flow reactor with mean residence time = 80 sec for: low, medium, and high [H₂O] = 0.07, 1, and 2.3% respectively, at fixed [O₃] = 5 ppm and I₂₅₄ = 6.4×10¹⁵ ph cm⁻² s⁻¹.

[Diagram showing modeled steady-state concentrations of NO, NO:HO₂, and OH:NO₃ as a function of [N₂O] with different [H₂O] levels.]
Figure S5. Modeled steady-state (a) OH exposure, (b) [NO], (c) NO:HO\(_2\), and (d) fractional oxidative loss to OH, O\(_3\), and NO\(_3\) as a function of input [N\(_2\)O] corresponding to isoprene oxidation conditions at low OH exposure in the PAM reactor. Error bars represent uncertainty in model outputs (Peng et al., 2015) and in accuracy of N\(_2\)O flow controller.

Figure S6. Modeled steady-state (a) OH exposure, (b) [NO], (c) NO:HO\(_2\), and (d) fractional oxidative loss to OH, O\(_3\), and NO\(_3\) as a function of input [N\(_2\)O] corresponding to isoprene oxidation conditions at high OH exposure in the PAM reactor. Error bars represent uncertainty in model outputs (Peng et al., 2015) and in accuracy of N\(_2\)O flow controller.
Figure S7. Modeled steady-state (a) OH exposure, (b) O$_3$ exposure, (c) [NO], (d) NO:HO$_2$, and (e) fractional oxidative loss to OH, O$_3$, and NO$_3$ as a function of input [N$_2$O] corresponding to α-pinene oxidation conditions at low OH exposure in the PAM reactor. Error bars represent uncertainty in model outputs (Peng et al., 2015) and in accuracy of N$_2$O flow controller.