Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 10, issue 6 | Copyright
Atmos. Meas. Tech., 10, 2299-2311, 2017
https://doi.org/10.5194/amt-10-2299-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 22 Jun 2017

Research article | 22 Jun 2017

Forest Fire Finder – DOAS application to long-range forest fire detection

Rui Valente de Almeida and Pedro Vieira
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
WIRA-C: a compact 142-GHz-radiometer for continuous middle-atmospheric wind measurements
Jonas Hagen, Axel Murk, Rolf Rüfenacht, Sergey Khaykin, Alain Hauchecorne, and Niklaus Kämpfer
Atmos. Meas. Tech., 11, 5007-5024, https://doi.org/10.5194/amt-11-5007-2018,https://doi.org/10.5194/amt-11-5007-2018, 2018
A large-area blackbody for in-flight calibration of an infrared interferometer deployed on board a long-duration balloon for stratospheric research
Friedhelm Olschewski, Christian Monte, Albert Adibekyan, Max Reiniger, Berndt Gutschwager, Joerg Hollandt, and Ralf Koppmann
Atmos. Meas. Tech., 11, 4757-4762, https://doi.org/10.5194/amt-11-4757-2018,https://doi.org/10.5194/amt-11-4757-2018, 2018
A measurement campaign to assess sources of error in microwave link rainfall estimation
Thomas C. van Leth, Aart Overeem, Hidde Leijnse, and Remko Uijlenhoet
Atmos. Meas. Tech., 11, 4645-4669, https://doi.org/10.5194/amt-11-4645-2018,https://doi.org/10.5194/amt-11-4645-2018, 2018
Simulation study for the Stratospheric Inferred Winds (SIW) sub-millimeter limb sounder
Philippe Baron, Donal Murtagh, Patrick Eriksson, Jana Mendrok, Satoshi Ochiai, Kristell Pérot, Hideo Sagawa, and Makoto Suzuki
Atmos. Meas. Tech., 11, 4545-4566, https://doi.org/10.5194/amt-11-4545-2018,https://doi.org/10.5194/amt-11-4545-2018, 2018
Reduction in 317–780 nm radiance reflected from the sunlit Earth during the eclipse of 21 August 2017
Jay Herman, Guoyong Wen, Alexander Marshak, Karin Blank, Liang Huang, Alexander Cede, Nader Abuhassan, and Matthew Kowalewski
Atmos. Meas. Tech., 11, 4373-4388, https://doi.org/10.5194/amt-11-4373-2018,https://doi.org/10.5194/amt-11-4373-2018, 2018
Cited articles
Alkhatib, A. A. A.: A review on forest fire detection techniques, International Journal of Distributed Sensor Networks, 2014, 597368, https://doi.org/10.1155/2014/597368, 2014.
Bevington, P. R. and Robinson, D. K.: Data Reduction and Error Analysis for the Physical Sciences, 2003.
BNHCRC: Bushfire & Natural Hazards CRC, available at: http://www.bnhcrc.com.au/home, last access: 10 May 2016.
Bogumil, K., Orphal, J., Homann, T., Voigt, S., Spietz, P., Fleischmann, O., Vogel, A., Hartmann, M., Kromminga, H., Bovensmann, H., Frerick, J., and Burrows, J.: Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region, J. Photoch. Photobio. A, 157, 167–184, https://doi.org/10.1016/S1010-6030(03)00062-5, 2003.
Boser, B. E., Guyon, I. M., and Vapnik, V. N.: A training algorithm for optimal margin classifiers, in: Proceedings of the fifth annual workshop on Computational learning theory – COLT '92, ACM Press, New York, New York, USA, 144–152, https://doi.org/10.1145/130385.130401, 1992.
Publications Copernicus
Download
Short summary
This paper presents the Forest Fire Finder (FFF) System, a long range forest fire detection system. It works by detecting a smoke column above the horizon, by analysing the light that goes through it. In the article, you will find a technical description and an analysis of the behaviour of 13 of these devices, which were installed in a Portuguese national park. We conclude that the deployed FFF network managed to detect more that 200 fires, proving the system to be effective in fire detection.
This paper presents the Forest Fire Finder (FFF) System, a long range forest fire detection...
Citation
Share