Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 10, issue 6
Atmos. Meas. Tech., 10, 2299–2311, 2017
https://doi.org/10.5194/amt-10-2299-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 10, 2299–2311, 2017
https://doi.org/10.5194/amt-10-2299-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 22 Jun 2017

Research article | 22 Jun 2017

Forest Fire Finder – DOAS application to long-range forest fire detection

Rui Valente de Almeida and Pedro Vieira

Related authors

TomoSim: a tomographic simulator for DOAS
Rui Valente de Almeida, Nuno Matela, and Pedro Vieira
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-26,https://doi.org/10.5194/amt-2020-26, 2020
Preprint under review for AMT
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
Vertical wind profiling from the troposphere to the lower mesosphere based on high-resolution heterodyne near-infrared spectroradiometry
Alexander V. Rodin, Dmitry V. Churbanov, Sergei G. Zenevich, Artem Y. Klimchuk, Vladimir M. Semenov, Maxim V. Spiridonov, and Iskander S. Gazizov
Atmos. Meas. Tech., 13, 2299–2308, https://doi.org/10.5194/amt-13-2299-2020,https://doi.org/10.5194/amt-13-2299-2020, 2020
Short summary
Effect of OH emission on the temperature and wind measurements derived from limb-viewing observations of the 1.27 µm O2 dayglow
Kuijun Wu, Weiwei He, Yutao Feng, Yuanhui Xiong, and Faquan Li
Atmos. Meas. Tech., 13, 1817–1824, https://doi.org/10.5194/amt-13-1817-2020,https://doi.org/10.5194/amt-13-1817-2020, 2020
Short summary
Doppler lidar at Observatoire de Haute-Provence for wind profiling up to 75 km altitude: performance evaluation and observations
Sergey M. Khaykin, Alain Hauchecorne, Robin Wing, Philippe Keckhut, Sophie Godin-Beekmann, Jacques Porteneuve, Jean-Francois Mariscal, and Jerome Schmitt
Atmos. Meas. Tech., 13, 1501–1516, https://doi.org/10.5194/amt-13-1501-2020,https://doi.org/10.5194/amt-13-1501-2020, 2020
Short summary
Quantifying hail size distributions from the sky – application of drone aerial photogrammetry
Joshua S. Soderholm, Matthew R. Kumjian, Nicholas McCarthy, Paula Maldonado, and Minzheng Wang
Atmos. Meas. Tech., 13, 747–754, https://doi.org/10.5194/amt-13-747-2020,https://doi.org/10.5194/amt-13-747-2020, 2020
Short summary
Wind sensing with drone-mounted wind lidars: proof of concept
Nikola Vasiljević, Michael Harris, Anders Tegtmeier Pedersen, Gunhild Rolighed Thorsen, Mark Pitter, Jane Harris, Kieran Bajpai, and Michael Courtney
Atmos. Meas. Tech., 13, 521–536, https://doi.org/10.5194/amt-13-521-2020,https://doi.org/10.5194/amt-13-521-2020, 2020
Short summary

Cited articles

Alkhatib, A. A. A.: A review on forest fire detection techniques, International Journal of Distributed Sensor Networks, 2014, 597368, https://doi.org/10.1155/2014/597368, 2014.
Bevington, P. R. and Robinson, D. K.: Data Reduction and Error Analysis for the Physical Sciences, 2003.
BNHCRC: Bushfire & Natural Hazards CRC, available at: http://www.bnhcrc.com.au/home, last access: 10 May 2016.
Bogumil, K., Orphal, J., Homann, T., Voigt, S., Spietz, P., Fleischmann, O., Vogel, A., Hartmann, M., Kromminga, H., Bovensmann, H., Frerick, J., and Burrows, J.: Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region, J. Photoch. Photobio. A, 157, 167–184, https://doi.org/10.1016/S1010-6030(03)00062-5, 2003.
Boser, B. E., Guyon, I. M., and Vapnik, V. N.: A training algorithm for optimal margin classifiers, in: Proceedings of the fifth annual workshop on Computational learning theory – COLT '92, ACM Press, New York, New York, USA, 144–152, https://doi.org/10.1145/130385.130401, 1992.
Publications Copernicus
Download
Short summary
This paper presents the Forest Fire Finder (FFF) System, a long range forest fire detection system. It works by detecting a smoke column above the horizon, by analysing the light that goes through it. In the article, you will find a technical description and an analysis of the behaviour of 13 of these devices, which were installed in a Portuguese national park. We conclude that the deployed FFF network managed to detect more that 200 fires, proving the system to be effective in fire detection.
This paper presents the Forest Fire Finder (FFF) System, a long range forest fire detection...
Citation