Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 10, issue 8
Atmos. Meas. Tech., 10, 2785-2806, 2017
https://doi.org/10.5194/amt-10-2785-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 10, 2785-2806, 2017
https://doi.org/10.5194/amt-10-2785-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 04 Aug 2017

Research article | 04 Aug 2017

Vertical air motion retrievals in deep convective clouds using the ARM scanning radar network in Oklahoma during MC3E

Kirk W. North et al.
Related authors  
Evaluation of differential absorption radars in the 183 GHz band for profiling water vapour in ice clouds
Alessandro Battaglia and Pavlos Kollias
Atmos. Meas. Tech., 12, 3335-3349, https://doi.org/10.5194/amt-12-3335-2019,https://doi.org/10.5194/amt-12-3335-2019, 2019
Short summary
A new approach to estimate supersaturation fluctuations in stratocumulus cloud using ground-based remote sensing measurements
Fan Yang, Robert McGraw, Edward P. Luke, Damao Zhang, Pavlos Kollias, and Andrew M. Vogelmann
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-222,https://doi.org/10.5194/amt-2019-222, 2019
Manuscript under review for AMT
Short summary
Use of polarimetric radar measurements to constrain simulated convective cell evolution: a pilot study with Lagrangian tracking
Ann M. Fridlind, Marcus van Lier-Walqui, Scott Collis, Scott E. Giangrande, Robert C. Jackson, Xiaowen Li, Toshihisa Matsui, Richard Orville, Mark H. Picel, Daniel Rosenfeld, Alexander Ryzhkov, Richard Weitz, and Pengfei Zhang
Atmos. Meas. Tech., 12, 2979-3000, https://doi.org/10.5194/amt-12-2979-2019,https://doi.org/10.5194/amt-12-2979-2019, 2019
Short summary
Microwave Radar/radiometer for Arctic Clouds MiRAC: First insights from the ACLOUD campaign
Mario Mech, Leif-Leonard Kliesch, Andreas Anhäuser, Thomas Rose, Pavlos Kollias, and Susanne Crewell
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-151,https://doi.org/10.5194/amt-2019-151, 2019
Manuscript under review for AMT
Short summary
Characterization of Shallow Oceanic Precipitation using Profiling and Scanning Radar Observations at the Eastern North Atlantic ARM Observatory
Katia Lamer, Bernat Puigdomènech Treserras, Zeen Zhu, Bradley Isom, Nitin Bharadwaj, and Pavlos Kollias
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-160,https://doi.org/10.5194/amt-2019-160, 2019
Revised manuscript under review for AMT
Short summary
Related subject area  
Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Estimation of liquid water path below the melting layer in stratiform precipitation systems using radar measurements during MC3E
Jingjing Tian, Xiquan Dong, Baike Xi, Christopher R. Williams, and Peng Wu
Atmos. Meas. Tech., 12, 3743-3759, https://doi.org/10.5194/amt-12-3743-2019,https://doi.org/10.5194/amt-12-3743-2019, 2019
Short summary
Correlated observation error models for assimilating all-sky infrared radiances
Alan J. Geer
Atmos. Meas. Tech., 12, 3629-3657, https://doi.org/10.5194/amt-12-3629-2019,https://doi.org/10.5194/amt-12-3629-2019, 2019
Short summary
Cloud identification and classification from high spectral resolution data in the far infrared and mid-infrared
Tiziano Maestri, William Cossich, and Iacopo Sbrolli
Atmos. Meas. Tech., 12, 3521-3540, https://doi.org/10.5194/amt-12-3521-2019,https://doi.org/10.5194/amt-12-3521-2019, 2019
Short summary
Investigating the liquid water path over the tropical Atlantic with synergistic airborne measurements
Marek Jacob, Felix Ament, Manuel Gutleben, Heike Konow, Mario Mech, Martin Wirth, and Susanne Crewell
Atmos. Meas. Tech., 12, 3237-3254, https://doi.org/10.5194/amt-12-3237-2019,https://doi.org/10.5194/amt-12-3237-2019, 2019
Short summary
Homogeneity criteria from AVHRR information within IASI pixels in a numerical weather prediction context
Imane Farouk, Nadia Fourrié, and Vincent Guidard
Atmos. Meas. Tech., 12, 3001-3017, https://doi.org/10.5194/amt-12-3001-2019,https://doi.org/10.5194/amt-12-3001-2019, 2019
Short summary
Cited articles  
Askelson, M. A. and Straka, J. M.: Response functions for arbitrary weight functions and data distributions. Part I: Framework for interpreting the response function, Mon. Weather Rev., 133, 2117–2131, 2005.
Askelson, M. A., Aubagnac, J.-P., and Straka, J. M.: An Adaptation of the Barnes Filter Applied to the Objective Analysis of Radar Data, Mon. Weather Rev., 128, 3050–3082, 2000.
Askelson, M. A., Pauley, P. M., and Straka, J. M.: Response functions for arbitrary weight functions and data distributions. Part II: Response function derivation and verification, Mon. Weather Rev., 133, 2132–2147, 2005.
Atmospheric Radiation Measurement (ARM) Climate Research Facility: Merged Sounding (MERGESONDE1MACE). 2011-04-25 to 2011-05-24, Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), compiled by: Troyan, D., Giangrande, S., and Toto, T., Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive, Oak Ridge, Tennessee, USA, updated hourly, https://doi.org/10.5439/1034922, 1996.
Atmospheric Radiation Measurement (ARM) Climate Research Facility: Radar Wind Profiler (915RWPPRECIPCON). 2011-04-25 to 2011-05-24, Southern Great Plains (SGP) Lamont, OK (NW radar wind profiler site, Intermediate/Auxiliary), compiled by: Muradyan, P., Coulter, R., and Martin, T., Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive, Oak Ridge, Tennessee, USA, updated hourly, https://doi.org/10.5439/1025127, 2011a.
Publications Copernicus
Download
Short summary
Vertical air motion retrievals from 3DVAR multiple distributed scanning Doppler radars are compared against collocated profiling radars and retrieved from an upward iteration integration iterative technique to characterize their veracity. The retrieved vertical air motions are generally within 1–2 m s−1 of agreement with profiling radars and better solution than the upward integration technique, and therefore can be used as a means to improve parameterizations in numerical models moving forward.
Vertical air motion retrievals from 3DVAR multiple distributed scanning Doppler radars are...
Citation