Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 10, issue 8
Atmos. Meas. Tech., 10, 2807–2820, 2017
https://doi.org/10.5194/amt-10-2807-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Advanced Global Navigation Satellite Systems tropospheric...

Atmos. Meas. Tech., 10, 2807–2820, 2017
https://doi.org/10.5194/amt-10-2807-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 07 Aug 2017

Research article | 07 Aug 2017

Determination of zenith hydrostatic delay and its impact on GNSS-derived integrated water vapor

Xiaoming Wang et al.
Viewed  
Total article views: 1,349 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
825 485 39 1,349 64 56 58
  • HTML: 825
  • PDF: 485
  • XML: 39
  • Total: 1,349
  • Supplement: 64
  • BibTeX: 56
  • EndNote: 58
Views and downloads (calculated since 16 Aug 2016)
Cumulative views and downloads (calculated since 16 Aug 2016)
Viewed (geographical distribution)  
Total article views: 1,306 (including HTML, PDF, and XML) Thereof 1,296 with geography defined and 10 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 09 Dec 2019
Publications Copernicus
Download
Short summary
Accurate knowledge of water vapor (WV) is vital for global climate studies. The Global Navigation Satellite System (GNSS) has been used as an emerging tool for sensing integrated WV (IWV). In the determination of PWV, surface pressure is required. However, few GNSS stations were installed with meteorological sensors back in the 1990s. Our research indicates that the ERA-Interim-derived pressure has the potential to be used to obtain high-accuracy IWV on a global scale for climate studies.
Accurate knowledge of water vapor (WV) is vital for global climate studies. The Global...
Citation