Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.089 IF 3.089
  • IF 5-year<br/> value: 3.700 IF 5-year
    3.700
  • CiteScore<br/> value: 3.59 CiteScore
    3.59
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
Atmos. Meas. Tech., 10, 2821-2835, 2017
https://doi.org/10.5194/amt-10-2821-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
08 Aug 2017
A method for measuring total aerosol oxidative potential (OP) with the dithiothreitol (DTT) assay and comparisons between an urban and roadside site of water-soluble and total OP
Dong Gao1, Ting Fang2, Vishal Verma3, Linghan Zeng2, and Rodney J. Weber2 1School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
2School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
3School of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Abstract. An automated analytical system was developed for measuring the oxidative potential (OP) with the dithiothreitol (DTT) assay of filter extracts that include both water-soluble and water-insoluble (solid) aerosol species. Three approaches for measuring total oxidative potential were compared. These include using methanol as the solvent with (1) and without (2) filtering the extract, followed by removing the solvent and reconstituting with water, and (3) extraction in pure water and performing the OP analysis in the extraction vial with the filter. The water extraction method (the third approach, with filter remaining in the vial) generally yielded the highest DTT responses with better precision (coefficient of variation of 1–5 %) and was correlated with a greater number of other aerosol components. Because no organic solvents were used, which must be mostly eliminated prior to DTT analysis, it was easiest to automate by modifying an automated analytical system for measuring water-soluble OP developed by Fang et al. (2015). Therefore, the third method was applied to the field study for the determination of total OP. Daily 23 h filter samples were collected simultaneously at a roadside (RS) and a representative urban (Georgia Tech, GT) site for two 1-month study periods, and both water-soluble (OPWS-DTT) and total (OPTotal-DTT) OP were measured. Using PM2. 5 (aerodynamic diameter  <  2.5 µm) high-volume samplers with quartz filters, the OPWS-DTT-to-OPTotal-DTT ratio at the urban site was 65 % with a correlation coefficient (r) of 0.71 (N  =  35; p value  <  0.01), compared to a ratio of 62 % and r = 0. 56 (N  =  31; p value  <  0.01) at the roadside site. The same DTT analyses were performed, and similar results were found using particle composition monitors (flow rate of 16.7 L min−1) with Teflon filters. Comparison of measurements between sites showed only slightly higher levels of both OPWS-DTT and OPTotal-DTT at the RS site, indicating both OPWS-DTT and OPTotal-DTT were largely spatially homogeneous. These results are consistent with roadway emissions as sources of DTT-quantified PM2. 5 OP and indicate that both soluble and insoluble aerosol components contributing to OP are largely secondary.

Citation: Gao, D., Fang, T., Verma, V., Zeng, L., and Weber, R. J.: A method for measuring total aerosol oxidative potential (OP) with the dithiothreitol (DTT) assay and comparisons between an urban and roadside site of water-soluble and total OP, Atmos. Meas. Tech., 10, 2821-2835, https://doi.org/10.5194/amt-10-2821-2017, 2017.
Publications Copernicus
Download
Short summary
This work compares three methods to determine the optimal approach for quantifying the total oxidative potential (OP) of fine particles collected with filters using the dithiothreitol (DTT) assay. An automated system has been developed to facilitate the total OP measurements for use in generation of large data sets needed for epidemiology studies. The results from this study show that the water-insoluble components contribute to PM2.5 OP and the related DTT-active species are largely secondary.
This work compares three methods to determine the optimal approach for quantifying the total...
Share