Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 10, issue 8
Atmos. Meas. Tech., 10, 2969–2988, 2017
https://doi.org/10.5194/amt-10-2969-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 10, 2969–2988, 2017
https://doi.org/10.5194/amt-10-2969-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 18 Aug 2017

Research article | 18 Aug 2017

Mixing layer height as an indicator for urban air quality?

Alexander Geiß et al.
Related authors  
Evaluation of ECMWF-IFS (version 41R1) operational model forecasts of aerosol transport by using ceilometer network measurements
Ka Lok Chan, Matthias Wiegner, Harald Flentje, Ina Mattis, Frank Wagner, Josef Gasteiger, and Alexander Geiß
Geosci. Model Dev., 11, 3807–3831, https://doi.org/10.5194/gmd-11-3807-2018,https://doi.org/10.5194/gmd-11-3807-2018, 2018
Short summary
Related subject area  
Subject: Aerosols | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Aerosol measurements with a shipborne Sun–sky–lunar photometer and collocated multiwavelength Raman polarization lidar over the Atlantic Ocean
Zhenping Yin, Albert Ansmann, Holger Baars, Patric Seifert, Ronny Engelmann, Martin Radenz, Cristofer Jimenez, Alina Herzog, Kevin Ohneiser, Karsten Hanbuch, Luc Blarel, Philippe Goloub, Gaël Dubois, Stephane Victori, and Fabrice Maupin
Atmos. Meas. Tech., 12, 5685–5698, https://doi.org/10.5194/amt-12-5685-2019,https://doi.org/10.5194/amt-12-5685-2019, 2019
Short summary
Intercomparison of aerosol volume size distributions derived from AERONET ground-based remote sensing and LARGE in situ aircraft profiles during the 2011–2014 DRAGON and DISCOVER-AQ experiments
Joel S. Schafer, Tom F. Eck, Brent N. Holben, Kenneth L. Thornhill, Luke D. Ziemba, Patricia Sawamura, Richard H. Moore, Ilya Slutsker, Bruce E. Anderson, Alexander Sinyuk, David M. Giles, Alexander Smirnov, Andreas J. Beyersdorf, and Edward L. Winstead
Atmos. Meas. Tech., 12, 5289–5301, https://doi.org/10.5194/amt-12-5289-2019,https://doi.org/10.5194/amt-12-5289-2019, 2019
Short summary
Validation, comparison, and integration of GOCI, AHI, MODIS, MISR, and VIIRS aerosol optical depth over East Asia during the 2016 KORUS-AQ campaign
Myungje Choi, Hyunkwang Lim, Jhoon Kim, Seoyoung Lee, Thomas F. Eck, Brent N. Holben, Michael J. Garay, Edward J. Hyer, Pablo E. Saide, and Hongqing Liu
Atmos. Meas. Tech., 12, 4619–4641, https://doi.org/10.5194/amt-12-4619-2019,https://doi.org/10.5194/amt-12-4619-2019, 2019
Short summary
Aerosol optical depth comparison between GAW-PFR and AERONET-Cimel radiometers from long-term (2005–2015) 1 min synchronous measurements
Emilio Cuevas, Pedro Miguel Romero-Campos, Natalia Kouremeti, Stelios Kazadzis, Petri Räisänen, Rosa Delia García, Africa Barreto, Carmen Guirado-Fuentes, Ramón Ramos, Carlos Toledano, Fernando Almansa, and Julian Gröbner
Atmos. Meas. Tech., 12, 4309–4337, https://doi.org/10.5194/amt-12-4309-2019,https://doi.org/10.5194/amt-12-4309-2019, 2019
Short summary
Accuracy assessment of MODIS land aerosol optical thickness algorithms using AERONET measurements over North America
Hiren Jethva, Omar Torres, and Yasuko Yoshida
Atmos. Meas. Tech., 12, 4291–4307, https://doi.org/10.5194/amt-12-4291-2019,https://doi.org/10.5194/amt-12-4291-2019, 2019
Short summary
Cited articles  
Alföldy, B., Osán, J., Toth, Z., Török, S., Harbusch, A., Jahn, C., Emeis, S., and Schäfer, K.: Aerosol optical depth, aerosol composition and air pollution during summer and winter conditions in Budapest, Sci. Total Environ., 383, 141–163, 2007.
Baars, H., Ansmann, A., Engelmann, R., and Althausen, D.: Continuous monitoring of the boundary-layer top with lidar, Atmos. Chem. Phys., 8, 7281–7296, https://doi.org/10.5194/acp-8-7281-2008, 2008.
Bachtiar, V. S., Davies, F., and Danson, F. M.: A combined model for improving estimation of atmospheric boundary layer height, Atmos. Environ. 98, 461–473, https://doi.org/10.1016/j.atmosenv.2014.09.028, 2014.
Banks, R. F., Tiana-Alsina, J., Baldasano, J. M., Rocadenbosch, F., Papayannis, A., Solomos, S., and Tzanis, C. G.: Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign, Atmos. Res., 176–177, 185–201, https://doi.org/10.1016/j.atmosres.2016.02.024, 2016.
Barlow, J. F.: Progress in observing and modelling the urban boundary layer, Urban Climate, 10, 216–240, https://doi.org/10.1016/j.uclim.2014.03.011, 2014.
Publications Copernicus
Download
Short summary
Based on measurements with a ceilometer and from an air quality network, the relationship between the mixing layer height (MLH) and near surface concentrations of pollutants was investigated for summer 2014 in Berlin. It was found that the heterogeneity of the concentrations exceeds the differences due to different MLH retrievals. In particular for PM10 it seems to be unrealistic to find correlations between MLH and concentrations representative for an entire metropolitan area in flat terrain.
Based on measurements with a ceilometer and from an air quality network, the relationship...
Citation