Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 10, issue 9 | Copyright

Special issue: VERDI – Vertical ​Distribution of Ice ​in Arctic...

Atmos. Meas. Tech., 10, 3215-3230, 2017
https://doi.org/10.5194/amt-10-3215-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 04 Sep 2017

Research article | 04 Sep 2017

Combined retrieval of Arctic liquid water cloud and surface snow properties using airborne spectral solar remote sensing

André Ehrlich et al.
Related authors
Synoptic development during the ACLOUD/PASCAL field campaign near Svalbard in spring 2017
Erlend M. Knudsen, Bernd Heinold, Sandro Dahlke, Heiko Bozem, Susanne Crewell, Georg Heygster, Daniel Kunkel, Marion Maturilli, Mario Mech, Annette Rinke, Holger Schmithüsen, André Ehrlich, Andreas Macke, Christof Lüpkes, and Manfred Wendisch
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-494,https://doi.org/10.5194/acp-2018-494, 2018
Manuscript under review for ACP
Comparing airborne and satellite retrievals of cloud optical thickness and particle effective radius using a spectral radiance ratio technique: two case studies for cirrus and deep convective clouds
Trismono C. Krisna, Manfred Wendisch, André Ehrlich, Evelyn Jäkel, Frank Werner, Ralf Weigel, Stephan Borrmann, Christoph Mahnke, Ulrich Pöschl, Meinrat O. Andreae, Christiane Voigt, and Luiz A. T. Machado
Atmos. Chem. Phys., 18, 4439-4462, https://doi.org/10.5194/acp-18-4439-2018,https://doi.org/10.5194/acp-18-4439-2018, 2018
Simulated and observed horizontal inhomogeneities of optical thickness of Arctic stratus
Michael Schäfer, Katharina Loewe, André Ehrlich, Corinna Hoose, and Manfred Wendisch
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-62,https://doi.org/10.5194/acp-2018-62, 2018
Revised manuscript under review for ACP
Comparison of different methods to retrieve optical-equivalent snow grain size in central Antarctica
Tim Carlsen, Gerit Birnbaum, André Ehrlich, Johannes Freitag, Georg Heygster, Larysa Istomina, Sepp Kipfstuhl, Anaïs Orsi, Michael Schäfer, and Manfred Wendisch
The Cryosphere, 11, 2727-2741, https://doi.org/10.5194/tc-11-2727-2017,https://doi.org/10.5194/tc-11-2727-2017, 2017
Classification of Arctic, midlatitude and tropical clouds in the mixed-phase temperature regime
Anja Costa, Jessica Meyer, Armin Afchine, Anna Luebke, Gebhard Günther, James R. Dorsey, Martin W. Gallagher, Andre Ehrlich, Manfred Wendisch, Darrel Baumgardner, Heike Wex, and Martina Krämer
Atmos. Chem. Phys., 17, 12219-12238, https://doi.org/10.5194/acp-17-12219-2017,https://doi.org/10.5194/acp-17-12219-2017, 2017
Related subject area
Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
A neural network approach to estimating a posteriori distributions of Bayesian retrieval problems
Simon Pfreundschuh, Patrick Eriksson, David Duncan, Bengt Rydberg, Nina Håkansson, and Anke Thoss
Atmos. Meas. Tech., 11, 4627-4643, https://doi.org/10.5194/amt-11-4627-2018,https://doi.org/10.5194/amt-11-4627-2018, 2018
Parameterizing cloud top effective radii from satellite retrieved values, accounting for vertical photon transport: quantification and correction of the resulting bias in droplet concentration and liquid water path retrievals
Daniel P. Grosvenor, Odran Sourdeval, and Robert Wood
Atmos. Meas. Tech., 11, 4273-4289, https://doi.org/10.5194/amt-11-4273-2018,https://doi.org/10.5194/amt-11-4273-2018, 2018
All-sky information content analysis for novel passive microwave instruments in the range from 23.8 to 874.4 GHz
Verena Grützun, Stefan A. Buehler, Lukas Kluft, Jana Mendrok, Manfred Brath, and Patrick Eriksson
Atmos. Meas. Tech., 11, 4217-4237, https://doi.org/10.5194/amt-11-4217-2018,https://doi.org/10.5194/amt-11-4217-2018, 2018
A cloud algorithm based on the O2-O2 477 nm absorption band featuring an advanced spectral fitting method and the use of surface geometry-dependent Lambertian-equivalent reflectivity
Alexander Vasilkov, Eun-Su Yang, Sergey Marchenko, Wenhan Qin, Lok Lamsal, Joanna Joiner, Nickolay Krotkov, David Haffner, Pawan K. Bhartia, and Robert Spurr
Atmos. Meas. Tech., 11, 4093-4107, https://doi.org/10.5194/amt-11-4093-2018,https://doi.org/10.5194/amt-11-4093-2018, 2018
Comparisons of bispectral and polarimetric retrievals of marine boundary layer cloud microphysics: case studies using a LES–satellite retrieval simulator
Daniel J. Miller, Zhibo Zhang, Steven Platnick, Andrew S. Ackerman, Frank Werner, Celine Cornet, and Kirk Knobelspiesse
Atmos. Meas. Tech., 11, 3689-3715, https://doi.org/10.5194/amt-11-3689-2018,https://doi.org/10.5194/amt-11-3689-2018, 2018
Cited articles
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V. M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., B., S., and Zhang, X. Y.: Clouds and Aerosols, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, V., Bex, V., and Midgley, P. M., book section 7, pp. 571–658, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324.016, 2013.
Brückner, M., Pospichal, B., Macke, A., and Wendisch, M.: A new multispectral cloud retrieval method for ship-based solar transmissivity measurements, J. Geophys. Res., 119, 11338–11354, https://doi.org/10.1002/2014JD021775, 2014.
Dang, C., Fu, Q., and Warren, S. G.: Effect of snow grain shape on snow albedo, J. Atmos. Sci., 73, 3573–3583, https://doi.org/10.1175/JAS-D-15-0276.1, 2016.
Derksen, C., Lemmetyinen, J., Toose, P., Silis, A., Pulliainen, J., and Sturm, M.: Physical properties of Arctic versus subarctic snow: Implications for high latitude passive microwave snow water equivalent retrievals, J. Geophys. Res., 119, 7254–7270, https://doi.org/10.1002/2013JD021264, 2014.
Ehrlich, A., Bierwirth, E., Wendisch, M., Gayet, J.-F., Mioche, G., Lampert, A., and Heintzenberg, J.: Cloud phase identification of Arctic boundary-layer clouds from airborne spectral reflection measurements: test of three approaches, Atmos. Chem. Phys., 8, 7493–7505, https://doi.org/10.5194/acp-8-7493-2008, 2008.
Publications Copernicus
Special issue
Download
Short summary
In the Arctic, uncertainties in passive solar remote sensing of cloud properties arise from uncertainties in the assumed spectral surface albedo, mainly determined by the generally unknown effective snow grain size. Therefore, a retrieval method is presented that simultaneously derives liquid water cloud and snow surface parameters, including cloud optical thickness, droplet effective radius, and effective snow grain size. Airborne measurements were used to test the retrieval procedure.
In the Arctic, uncertainties in passive solar remote sensing of cloud properties arise from...
Citation
Share