Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 10, issue 9 | Copyright

Special issue: VERDI – Vertical ​Distribution of Ice ​in Arctic...

Atmos. Meas. Tech., 10, 3215-3230, 2017
https://doi.org/10.5194/amt-10-3215-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 04 Sep 2017

Research article | 04 Sep 2017

Combined retrieval of Arctic liquid water cloud and surface snow properties using airborne spectral solar remote sensing

André Ehrlich et al.
Related authors
Simulated and observed horizontal inhomogeneities of optical thickness of Arctic stratus
Michael Schäfer, Katharina Loewe, André Ehrlich, Corinna Hoose, and Manfred Wendisch
Atmos. Chem. Phys., 18, 13115-13133, https://doi.org/10.5194/acp-18-13115-2018,https://doi.org/10.5194/acp-18-13115-2018, 2018
Synoptic development during the ACLOUD/PASCAL field campaign near Svalbard in spring 2017
Erlend M. Knudsen, Bernd Heinold, Sandro Dahlke, Heiko Bozem, Susanne Crewell, Georg Heygster, Daniel Kunkel, Marion Maturilli, Mario Mech, Annette Rinke, Holger Schmithüsen, André Ehrlich, Andreas Macke, Christof Lüpkes, and Manfred Wendisch
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-494,https://doi.org/10.5194/acp-2018-494, 2018
Manuscript under review for ACP
Comparing airborne and satellite retrievals of cloud optical thickness and particle effective radius using a spectral radiance ratio technique: two case studies for cirrus and deep convective clouds
Trismono C. Krisna, Manfred Wendisch, André Ehrlich, Evelyn Jäkel, Frank Werner, Ralf Weigel, Stephan Borrmann, Christoph Mahnke, Ulrich Pöschl, Meinrat O. Andreae, Christiane Voigt, and Luiz A. T. Machado
Atmos. Chem. Phys., 18, 4439-4462, https://doi.org/10.5194/acp-18-4439-2018,https://doi.org/10.5194/acp-18-4439-2018, 2018
Comparison of different methods to retrieve optical-equivalent snow grain size in central Antarctica
Tim Carlsen, Gerit Birnbaum, André Ehrlich, Johannes Freitag, Georg Heygster, Larysa Istomina, Sepp Kipfstuhl, Anaïs Orsi, Michael Schäfer, and Manfred Wendisch
The Cryosphere, 11, 2727-2741, https://doi.org/10.5194/tc-11-2727-2017,https://doi.org/10.5194/tc-11-2727-2017, 2017
Classification of Arctic, midlatitude and tropical clouds in the mixed-phase temperature regime
Anja Costa, Jessica Meyer, Armin Afchine, Anna Luebke, Gebhard Günther, James R. Dorsey, Martin W. Gallagher, Andre Ehrlich, Manfred Wendisch, Darrel Baumgardner, Heike Wex, and Martina Krämer
Atmos. Chem. Phys., 17, 12219-12238, https://doi.org/10.5194/acp-17-12219-2017,https://doi.org/10.5194/acp-17-12219-2017, 2017
Related subject area
Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Extinction and optical depth retrievals for CALIPSO's Version 4 data release
Stuart A. Young, Mark A. Vaughan, Anne Garnier, Jason L. Tackett, James D. Lambeth, and Kathleen A. Powell
Atmos. Meas. Tech., 11, 5701-5727, https://doi.org/10.5194/amt-11-5701-2018,https://doi.org/10.5194/amt-11-5701-2018, 2018
First fully diurnal fog and low cloud satellite detection reveals life cycle in the Namib
Hendrik Andersen and Jan Cermak
Atmos. Meas. Tech., 11, 5461-5470, https://doi.org/10.5194/amt-11-5461-2018,https://doi.org/10.5194/amt-11-5461-2018, 2018
Cloud classification of ground-based infrared images combining manifold and texture features
Qixiang Luo, Yong Meng, Lei Liu, Xiaofeng Zhao, and Zeming Zhou
Atmos. Meas. Tech., 11, 5351-5361, https://doi.org/10.5194/amt-11-5351-2018,https://doi.org/10.5194/amt-11-5351-2018, 2018
Clutter mitigation, multiple peaks, and high-order spectral moments in 35 GHz vertically pointing radar velocity spectra
Christopher R. Williams, Maximilian Maahn, Joseph C. Hardin, and Gijs de Boer
Atmos. Meas. Tech., 11, 4963-4980, https://doi.org/10.5194/amt-11-4963-2018,https://doi.org/10.5194/amt-11-4963-2018, 2018
A neural network approach to estimating a posteriori distributions of Bayesian retrieval problems
Simon Pfreundschuh, Patrick Eriksson, David Duncan, Bengt Rydberg, Nina Håkansson, and Anke Thoss
Atmos. Meas. Tech., 11, 4627-4643, https://doi.org/10.5194/amt-11-4627-2018,https://doi.org/10.5194/amt-11-4627-2018, 2018
Cited articles
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V. M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., B., S., and Zhang, X. Y.: Clouds and Aerosols, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, V., Bex, V., and Midgley, P. M., book section 7, pp. 571–658, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324.016, 2013.
Brückner, M., Pospichal, B., Macke, A., and Wendisch, M.: A new multispectral cloud retrieval method for ship-based solar transmissivity measurements, J. Geophys. Res., 119, 11338–11354, https://doi.org/10.1002/2014JD021775, 2014.
Dang, C., Fu, Q., and Warren, S. G.: Effect of snow grain shape on snow albedo, J. Atmos. Sci., 73, 3573–3583, https://doi.org/10.1175/JAS-D-15-0276.1, 2016.
Derksen, C., Lemmetyinen, J., Toose, P., Silis, A., Pulliainen, J., and Sturm, M.: Physical properties of Arctic versus subarctic snow: Implications for high latitude passive microwave snow water equivalent retrievals, J. Geophys. Res., 119, 7254–7270, https://doi.org/10.1002/2013JD021264, 2014.
Ehrlich, A., Bierwirth, E., Wendisch, M., Gayet, J.-F., Mioche, G., Lampert, A., and Heintzenberg, J.: Cloud phase identification of Arctic boundary-layer clouds from airborne spectral reflection measurements: test of three approaches, Atmos. Chem. Phys., 8, 7493–7505, https://doi.org/10.5194/acp-8-7493-2008, 2008.
Publications Copernicus
Special issue
Download
Short summary
In the Arctic, uncertainties in passive solar remote sensing of cloud properties arise from uncertainties in the assumed spectral surface albedo, mainly determined by the generally unknown effective snow grain size. Therefore, a retrieval method is presented that simultaneously derives liquid water cloud and snow surface parameters, including cloud optical thickness, droplet effective radius, and effective snow grain size. Airborne measurements were used to test the retrieval procedure.
In the Arctic, uncertainties in passive solar remote sensing of cloud properties arise from...
Citation
Share