Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 10, issue 9
Atmos. Meas. Tech., 10, 3215-3230, 2017
https://doi.org/10.5194/amt-10-3215-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: VERDI – Vertical ​Distribution of Ice ​in Arctic Clouds...

Atmos. Meas. Tech., 10, 3215-3230, 2017
https://doi.org/10.5194/amt-10-3215-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 04 Sep 2017

Research article | 04 Sep 2017

Combined retrieval of Arctic liquid water cloud and surface snow properties using airborne spectral solar remote sensing

André Ehrlich et al.
Related authors  
Meteorological conditions during the ACLOUD/PASCAL field campaign near Svalbard in early summer 2017
Erlend M. Knudsen, Bernd Heinold, Sandro Dahlke, Heiko Bozem, Susanne Crewell, Irina V. Gorodetskaya, Georg Heygster, Daniel Kunkel, Marion Maturilli, Mario Mech, Carolina Viceto, Annette Rinke, Holger Schmithüsen, André Ehrlich, Andreas Macke, Christof Lüpkes, and Manfred Wendisch
Atmos. Chem. Phys., 18, 17995-18022, https://doi.org/10.5194/acp-18-17995-2018,https://doi.org/10.5194/acp-18-17995-2018, 2018
Short summary
Improvement of Airborne Retrievals of Cloud Droplet Number Concentration of Trade Wind Cumulus Using a Synergetic Approach
Kevin Wolf, André Ehrlich, Marek Jacob, Susanne Crewell, Martin Wirth, and Manfred Wendisch
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-266,https://doi.org/10.5194/amt-2018-266, 2018
Manuscript under review for AMT
Short summary
Simulated and observed horizontal inhomogeneities of optical thickness of Arctic stratus
Michael Schäfer, Katharina Loewe, André Ehrlich, Corinna Hoose, and Manfred Wendisch
Atmos. Chem. Phys., 18, 13115-13133, https://doi.org/10.5194/acp-18-13115-2018,https://doi.org/10.5194/acp-18-13115-2018, 2018
Short summary
Comparing airborne and satellite retrievals of cloud optical thickness and particle effective radius using a spectral radiance ratio technique: two case studies for cirrus and deep convective clouds
Trismono C. Krisna, Manfred Wendisch, André Ehrlich, Evelyn Jäkel, Frank Werner, Ralf Weigel, Stephan Borrmann, Christoph Mahnke, Ulrich Pöschl, Meinrat O. Andreae, Christiane Voigt, and Luiz A. T. Machado
Atmos. Chem. Phys., 18, 4439-4462, https://doi.org/10.5194/acp-18-4439-2018,https://doi.org/10.5194/acp-18-4439-2018, 2018
Short summary
Comparison of different methods to retrieve optical-equivalent snow grain size in central Antarctica
Tim Carlsen, Gerit Birnbaum, André Ehrlich, Johannes Freitag, Georg Heygster, Larysa Istomina, Sepp Kipfstuhl, Anaïs Orsi, Michael Schäfer, and Manfred Wendisch
The Cryosphere, 11, 2727-2741, https://doi.org/10.5194/tc-11-2727-2017,https://doi.org/10.5194/tc-11-2727-2017, 2017
Short summary
Related subject area  
Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
CALIPSO lidar calibration at 1064 nm: version 4 algorithm
Mark Vaughan, Anne Garnier, Damien Josset, Melody Avery, Kam-Pui Lee, Zhaoyan Liu, William Hunt, Jacques Pelon, Yongxiang Hu, Sharon Burton, Johnathan Hair, Jason L. Tackett, Brian Getzewich, Jayanta Kar, and Sharon Rodier
Atmos. Meas. Tech., 12, 51-82, https://doi.org/10.5194/amt-12-51-2019,https://doi.org/10.5194/amt-12-51-2019, 2019
Short summary
Boundary-layer water vapor profiling using differential absorption radar
Richard J. Roy, Matthew Lebsock, Luis Millán, Robert Dengler, Raquel Rodriguez Monje, Jose V. Siles, and Ken B. Cooper
Atmos. Meas. Tech., 11, 6511-6523, https://doi.org/10.5194/amt-11-6511-2018,https://doi.org/10.5194/amt-11-6511-2018, 2018
Short summary
CALIPSO lidar calibration at 532 nm: version 4 daytime algorithm
Brian J. Getzewich, Mark A. Vaughan, William H. Hunt, Melody A. Avery, Kathleen A. Powell, Jason L. Tackett, David M. Winker, Jayanta Kar, Kam-Pui Lee, and Travis D. Toth
Atmos. Meas. Tech., 11, 6309-6326, https://doi.org/10.5194/amt-11-6309-2018,https://doi.org/10.5194/amt-11-6309-2018, 2018
Short summary
The MIPAS/Envisat climatology (2002–2012) of polar stratospheric cloud volume density profiles
Michael Höpfner, Terry Deshler, Michael Pitts, Lamont Poole, Reinhold Spang, Gabriele Stiller, and Thomas von Clarmann
Atmos. Meas. Tech., 11, 5901-5923, https://doi.org/10.5194/amt-11-5901-2018,https://doi.org/10.5194/amt-11-5901-2018, 2018
Short summary
Extinction and optical depth retrievals for CALIPSO's Version 4 data release
Stuart A. Young, Mark A. Vaughan, Anne Garnier, Jason L. Tackett, James D. Lambeth, and Kathleen A. Powell
Atmos. Meas. Tech., 11, 5701-5727, https://doi.org/10.5194/amt-11-5701-2018,https://doi.org/10.5194/amt-11-5701-2018, 2018
Short summary
Cited articles  
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V. M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., B., S., and Zhang, X. Y.: Clouds and Aerosols, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, V., Bex, V., and Midgley, P. M., book section 7, pp. 571–658, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324.016, 2013.
Brückner, M., Pospichal, B., Macke, A., and Wendisch, M.: A new multispectral cloud retrieval method for ship-based solar transmissivity measurements, J. Geophys. Res., 119, 11338–11354, https://doi.org/10.1002/2014JD021775, 2014.
Dang, C., Fu, Q., and Warren, S. G.: Effect of snow grain shape on snow albedo, J. Atmos. Sci., 73, 3573–3583, https://doi.org/10.1175/JAS-D-15-0276.1, 2016.
Derksen, C., Lemmetyinen, J., Toose, P., Silis, A., Pulliainen, J., and Sturm, M.: Physical properties of Arctic versus subarctic snow: Implications for high latitude passive microwave snow water equivalent retrievals, J. Geophys. Res., 119, 7254–7270, https://doi.org/10.1002/2013JD021264, 2014.
Ehrlich, A., Bierwirth, E., Wendisch, M., Gayet, J.-F., Mioche, G., Lampert, A., and Heintzenberg, J.: Cloud phase identification of Arctic boundary-layer clouds from airborne spectral reflection measurements: test of three approaches, Atmos. Chem. Phys., 8, 7493–7505, https://doi.org/10.5194/acp-8-7493-2008, 2008.
Publications Copernicus
Special issue
Download
Short summary
In the Arctic, uncertainties in passive solar remote sensing of cloud properties arise from uncertainties in the assumed spectral surface albedo, mainly determined by the generally unknown effective snow grain size. Therefore, a retrieval method is presented that simultaneously derives liquid water cloud and snow surface parameters, including cloud optical thickness, droplet effective radius, and effective snow grain size. Airborne measurements were used to test the retrieval procedure.
In the Arctic, uncertainties in passive solar remote sensing of cloud properties arise from...
Citation
Share