Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 10, issue 9
Atmos. Meas. Tech., 10, 3273–3294, 2017
https://doi.org/10.5194/amt-10-3273-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 10, 3273–3294, 2017
https://doi.org/10.5194/amt-10-3273-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 08 Sep 2017

Research article | 08 Sep 2017

Multi-year comparisons of ground-based and space-borne Fourier transform spectrometers in the high Arctic between 2006 and 2013

Debora Griffin et al.
Viewed  
Total article views: 1,001 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
618 342 41 1,001 59 47 49
  • HTML: 618
  • PDF: 342
  • XML: 41
  • Total: 1,001
  • Supplement: 59
  • BibTeX: 47
  • EndNote: 49
Views and downloads (calculated since 19 Sep 2016)
Cumulative views and downloads (calculated since 19 Sep 2016)
Viewed (geographical distribution)  
Total article views: 994 (including HTML, PDF, and XML) Thereof 989 with geography defined and 5 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 18 Oct 2019
Publications Copernicus
Download
Short summary
Measurements in the high Arctic from two ground-based and one space-borne infrared Fourier transform spectrometer agree well over an 8-year time period (2006–2013). These comparisons show no notable degradation, indicating the consistency of these data sets and suggesting that the space-borne measurements have been stable. Increasing ozone, as well as increases of some other atmospheric gases, has been found over this same time period.
Measurements in the high Arctic from two ground-based and one space-borne infrared Fourier...
Citation