Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 10, issue 9 | Copyright

Special issue: Twenty-five years of operations of the Network for the Detection...

Atmos. Meas. Tech., 10, 3359-3373, 2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 15 Sep 2017

Research article | 15 Sep 2017

Tropospheric ozone profiles by DIAL at Maïdo Observatory (Reunion Island): system description, instrumental performance and result comparison with ozone external data set

Valentin Duflot1,2, Jean-Luc Baray3, Guillaume Payen2, Nicolas Marquestaut2, Francoise Posny1, Jean-Marc Metzger2, Bavo Langerock4, Corinne Vigouroux4, Juliette Hadji-Lazaro5, Thierry Portafaix1, Martine De Mazière4, Pierre-Francois Coheur6, Cathy Clerbaux5,6, and Jean-Pierre Cammas1,2 Valentin Duflot et al.
  • 1Laboratoire de l'Atmosphère et des Cyclones (LACy), UMR8105, Saint-Denis, Réunion, France
  • 2Observatoire des Sciences de l'Univers de La Réunion (OSUR), UMS3365, Saint-Denis, Réunion, France
  • 3Laboratoire de Météorologie Physique (LaMP), UMR6016, Observatoire de Physique du Globe de Clermont-Ferrand, CNRS - Université Blaise Pascal, Clermont-Ferrand, France
  • 4Royal Belgian Institute for Space Aeronomy (BIRA-IASB), 3, Av. Circulaire, 1180, Brussels, Belgium
  • 5LATMOS/IPSL, UPMC Univ. Paris 06 Sorbonne Universités, UVSQ, CNRS, Paris, France
  • 6Spectroscopie de l'Atmosphère, Service de Chimie Quantique et Photophysique, Université Libre de Bruxelles (ULB), Brussels, Belgium

Abstract. In order to recognize the importance of ozone (O3) in the troposphere and lower stratosphere in the tropics, a DIAL (differential absorption lidar) tropospheric O3 lidar system (LIO3TUR) was developed and installed at the Université de la Réunion campus site (close to the sea) on Reunion Island (southern tropics) in 1998. From 1998 to 2010, it acquired 427 O3 profiles from the low to the upper troposphere and has been central to several studies. In 2012, the system was moved up to the new Maïdo Observatory facility (2160ma.m.s.l. – metres above mean sea level) where it started operation in February 2013. The current system (LIO3T) configuration generates a 266nm beam obtained with the fourth harmonic of a Nd:YAG laser sent into a Raman cell filled up with deuterium (using helium as buffer gas), generating the 289 and 316nm beams to enable the use of the DIAL method for O3 profile measurements. The optimal range for the actual system is 6–19kma.m.s.l., depending on the instrumental and atmospheric conditions. For a 1h integration time, vertical resolution varies from 0.7km at 6kma.m.s.l. to 1.3km at 19kma.m.s.l., and mean uncertainty within the 6–19km range is between 6 and 13%. Comparisons with eight electrochemical concentration cell (ECC) sondes simultaneously launched from the Maïdo Observatory show good agreement between data sets with a 6.8% mean absolute relative difference (D) between 6 and 17kma.m.s.l. (LIO3T lower than ECC). Comparisons with 37 ECC sondes launched from the nearby Gillot site during the daytime in a ±24h window around lidar shooting result in a 9.4D between 6 and 19kma.m.s.l. (LIO3T lower than ECC). Comparisons with 11 ground-based Network for Detection of Atmospheric Composition Change (NDACC) Fourier transform infrared (FTIR) spectrometer measurements acquired during the daytime in a ±24h window around lidar shooting show good agreement between data sets with a D of 11.8% for the 8.5–16km partial column (LIO3T higher than FTIR), and comparisons with 39 simultaneous Infrared Atmospheric Sounding Interferometer (IASI) observations over Reunion Island show good agreement between data sets with a D of 11.3% for the 6–16km partial column (LIO3T higher than IASI). ECC, LIO3TUR and LIO3T O3 monthly climatologies all exhibit the same range of values and patterns. In particular, the Southern Hemisphere biomass burning seasonal enhancement and the ozonopause altitude decrease in late austral winter–spring, as well as the sign of deep convection bringing boundary layer O3-poor air masses up to the middle–upper troposphere in late austral summer, are clearly visible in all data sets.

Publications Copernicus
Special issue