Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 10, issue 9 | Copyright

Special issue: Advanced Global Navigation Satellite Systems tropospheric...

Atmos. Meas. Tech., 10, 3589-3607, 2017
https://doi.org/10.5194/amt-10-3589-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 29 Sep 2017

Research article | 29 Sep 2017

Tropospheric products of the second GOP European GNSS reprocessing (1996–2014)

Jan Dousa, Pavel Vaclavovic, and Michal Elias Jan Dousa et al.
  • NTIS – New Technologies for the Information Society, Geodetic Observatory Pecný, RIGTC, 250 66 Zdiby, Czech Republic

Abstract. In this paper, we present results of the second reprocessing of all data from 1996 to 2014 from all stations in International Association of Geodesy (IAG) Reference Frame Sub-Commission for Europe (EUREF) Permanent Network (EPN) as performed at the Geodetic Observatory Pecný (GOP). While the original goal of this research was to ultimately contribute to the realization of a new European Terrestrial Reference System (ETRS), we also aim to provide a new set of GNSS (Global Navigation Satellite System) tropospheric parameter time series with possible applications to climate research. To achieve these goals, we improved a strategy to guarantee the continuity of these tropospheric parameters and we prepared several variants of troposphere modelling. We then assessed all solutions in terms of the repeatability of coordinates as an internal evaluation of applied models and strategies and in terms of zenith tropospheric delays (ZTDs) and horizontal gradients with those of the ERA-Interim numerical weather model (NWM) reanalysis. When compared to the GOP Repro1 (first EUREF reprocessing) solution, the results of the GOP Repro2 (second EUREF reprocessing) yielded improvements of approximately 50 and 25% in the repeatability of the horizontal and vertical components, respectively, and of approximately 9% in tropospheric parameters. Vertical repeatability was reduced from 4.14 to 3.73mm when using the VMF1 mapping function, a priori ZHD (zenith hydrostatic delay), and non-tidal atmospheric loading corrections from actual weather data. Raising the elevation cut-off angle from 3 to 7° and then to 10° increased RMS from coordinates' repeatability, which was then confirmed by independently comparing GNSS tropospheric parameters with the NWM reanalysis. The assessment of tropospheric horizontal gradients with respect to the ERA-Interim revealed a strong sensitivity of estimated gradients to the quality of GNSS antenna tracking performance. This impact was demonstrated at the Mallorca station, where gradients systematically grew up to 5mm during the period between 2003 and 2008, before this behaviour disappeared when the antenna at the station was changed. The impact of processing variants on long-term ZTD trend estimates was assessed at 172 EUREF stations with time series longer than 10 years. The most significant site-specific impact was due to the non-tidal atmospheric loading followed by the impact of changing the elevation cut-off angle from 3 to 10°. The other processing strategy had a very small or negligible impact on estimated trends.

Publications Copernicus
Special issue
Download
Short summary
The second GOP reprocessing of EUREF network (1996 to 2014) produced GNSS tropospheric parameters for climate research. We performed and evaluated seven solutions and enhanced a strategy for the continuity of tropospheric parameters. Compared with Repro1, Repro2 yielded improvements of 50 % and 25 % in repeatability of horizontal and vertical coordinates and 9 % in tropospheric parameters. Tropospheric gradients revealed a strong sensitivity to GNSS tracking demonstrated at Mallorca station.
The second GOP reprocessing of EUREF network (1996 to 2014) produced GNSS tropospheric...
Citation
Share