Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year
    3.650
  • CiteScore value: 3.37 CiteScore
    3.37
  • SNIP value: 1.253 SNIP 1.253
  • IPP value: 3.29 IPP 3.29
  • SJR value: 1.869 SJR 1.869
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 60 Scimago H
    index 60
  • h5-index value: 47 h5-index 47
Volume 10, issue 1
Atmos. Meas. Tech., 10, 373-392, 2017
https://doi.org/10.5194/amt-10-373-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 10, 373-392, 2017
https://doi.org/10.5194/amt-10-373-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 01 Feb 2017

Research article | 01 Feb 2017

The CU mobile Solar Occultation Flux instrument: structure functions and emission rates of NH3, NO2 and C2H6

Natalie Kille et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Publications Copernicus
Download
Short summary
This article describes a new instrument for measuring and quantifying emission fluxes. It introduces the instrument using the solar occultation flux method. Results are presented from the FRAPPE field campaign near Denver, Colorado, from 2014. Calculations of emissions of sources are presented from FRAPPE and compared to emission inventories. Finally, structure functions are calculated to facilitate the future comparison of high-resolution measurements with low resolution satellite measurements.
This article describes a new instrument for measuring and quantifying emission fluxes. It...
Citation