Articles | Volume 10, issue 10
https://doi.org/10.5194/amt-10-3919-2017
https://doi.org/10.5194/amt-10-3919-2017
Research article
 | 
24 Oct 2017
Research article |  | 24 Oct 2017

The importance of atmospheric correction for airborne hyperspectral remote sensing of shallow waters: application to depth estimation

Elena Castillo-López, Jose Antonio Dominguez, Raúl Pereda, Julio Manuel de Luis, Ruben Pérez, and Felipe Piña

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Evaluation of tropospheric water vapour and temperature profiles retrieved from MetOp-A by the Infrared and Microwave Sounding scheme
Tim Trent, Richard Siddans, Brian Kerridge, Marc Schröder, Noëlle A. Scott, and John Remedios
Atmos. Meas. Tech., 16, 1503–1526, https://doi.org/10.5194/amt-16-1503-2023,https://doi.org/10.5194/amt-16-1503-2023, 2023
Short summary
The impacts of assimilating Aeolus horizontal line-of-sight winds on numerical predictions of Hurricane Ida (2021) and a mesoscale convective system over the Atlantic Ocean
Chengfeng Feng and Zhaoxia Pu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-341,https://doi.org/10.5194/amt-2022-341, 2023
Preprint under review for AMT
Short summary
Validation of the Aeolus L2B wind product with airborne wind lidar measurements in the polar North Atlantic region and in the tropics
Benjamin Witschas, Christian Lemmerz, Alexander Geiß, Oliver Lux, Uwe Marksteiner, Stephan Rahm, Oliver Reitebuch, Andreas Schäfler, and Fabian Weiler
Atmos. Meas. Tech., 15, 7049–7070, https://doi.org/10.5194/amt-15-7049-2022,https://doi.org/10.5194/amt-15-7049-2022, 2022
Short summary
An improved vertical correction method for the inter-comparison and inter-validation of integrated water vapour measurements
Olivier Bock, Pierre Bosser, and Carl Mears
Atmos. Meas. Tech., 15, 5643–5665, https://doi.org/10.5194/amt-15-5643-2022,https://doi.org/10.5194/amt-15-5643-2022, 2022
Short summary
An assessment of reprocessed GPS/MET observations spanning 1995–1997
Anthony J. Mannucci, Chi O. Ao, Byron A. Iijima, Thomas K. Meehan, Panagiotis Vergados, E. Robert Kursinski, and William S. Schreiner
Atmos. Meas. Tech., 15, 4971–4987, https://doi.org/10.5194/amt-15-4971-2022,https://doi.org/10.5194/amt-15-4971-2022, 2022
Short summary

Cited articles

Adler-Golden, S. M., Acharya, P. K., Berk, A., Matthew, M. W., and Gorodetzky, D.: Remote Bathymetry of the Littoral Zone From AVIRIS, LASH, and QUIckBIRD Imagery, IEEE T. Geosci. Remote, 43, 337–347, 2005.
Austin, R. W.: The remote sensing of spectral radiance from below the ocean surface, in: Optical Aspects of Oceanography, edited by: Jerlov, N. G. and Steemann-Nielsen, E., Academic Press, London, 317–344, 1974.
Bayarri, V. and Castillo, E.: Application of robust techniques for estimating depths in the Port of Santoña with high-resolution airborne sensors, 6th Geomatic Week, 8–11 February, Barcelona, 2005.
Benny, A. H. and Dawson, G. J.: Satellite imagery as an aid to bathymetric charting in the Red Sea, Cartogr. J., 20, 5–16, 1983.
Castillo, E., Pereda, R., Manuel de Luis, J., Medina, R., and Viguri, J.: Sediment grain size estimation using airborne remote sensing, field sampling, and robust statistic, Environ. Monit. Assess., 181, 431–444, 2011.
Download
Short summary
This work is part of a project funded by the government of Spain, whose objective was to develop a methodology that would allow the grain size and heavy metals estimation in the sediments of the intertidal zone (Bay of Santander) and depth estimation in the subtidal area, using information (VNIR) captured by the hyperspectral sensor, CASI-2, a spectroradiometer ASD-FR (350–2500 nm) in field and laboratory and classical and robust statistic algorithms.