Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year
    3.650
  • CiteScore value: 3.37 CiteScore
    3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 60 Scimago H
    index 60
Volume 10, issue 2
Atmos. Meas. Tech., 10, 393-407, 2017
https://doi.org/10.5194/amt-10-393-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Pushing the limits: The eXperimental Planetary boundary layer...

Atmos. Meas. Tech., 10, 393-407, 2017
https://doi.org/10.5194/amt-10-393-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 02 Feb 2017

Research article | 02 Feb 2017

Identification of tower-wake distortions using sonic anemometer and lidar measurements

Katherine McCaffrey et al.
Viewed  
Total article views: 1,066 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
702 343 21 1,066 41 43
  • HTML: 702
  • PDF: 343
  • XML: 21
  • Total: 1,066
  • BibTeX: 41
  • EndNote: 43
Views and downloads (calculated since 22 Jul 2016)
Cumulative views and downloads (calculated since 22 Jul 2016)
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 17 Jun 2019
Publications Copernicus
Download
Short summary
During the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) field campaign, the wake and flow distortion from a 300-meter meteorological tower was identified using pairs of sonic anemometers mounted on opposite sides of the tower, as well as profiling and scanning lidars. Wind speed deficits up to 50% and TKE increases of 2 orders of magnitude were observed at wind directions in the wake, along with wind direction differences (flow deflection) outside of the wake.
During the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) field...
Citation