Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 10, issue 11
Atmos. Meas. Tech., 10, 4099–4120, 2017
https://doi.org/10.5194/amt-10-4099-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 10, 4099–4120, 2017
https://doi.org/10.5194/amt-10-4099-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 02 Nov 2017

Research article | 02 Nov 2017

Replacing the AMOR with the miniDOAS in the ammonia monitoring network in the Netherlands

Augustinus J. C. Berkhout et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Publications Copernicus
Download
Short summary
One of the gases polluting the air that we measure in the Dutch National Air Quality Monitoring Network is ammonia. We replaced the ageing instruments that we used for the past 20 years by the miniDOAS, an instrument that uses ultraviolet light to measure ammonia. We operated the old and new instruments side by side for more than a year and found them to agree well. The miniDOAS measures faster than the old instrument; this will give us more insight in how ammonia behaves in the atmosphere.
One of the gases polluting the air that we measure in the Dutch National Air Quality Monitoring...
Citation