Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.089 IF 3.089
  • IF 5-year<br/> value: 3.700 IF 5-year
    3.700
  • CiteScore<br/> value: 3.59 CiteScore
    3.59
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
Atmos. Meas. Tech., 10, 4135-4164, 2017
https://doi.org/10.5194/amt-10-4135-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
06 Nov 2017
Global height-resolved methane retrievals from the Infrared Atmospheric Sounding Interferometer (IASI) on MetOp
Richard Siddans1,2, Diane Knappett1,2, Brian Kerridge1,2, Alison Waterfall1, Jane Hurley1, Barry Latter1,2, Hartmut Boesch2,3, and Robert Parker2,3 1STFC Rutherford Appleton Laboratory, Chilton, UK
2National Centre for Earth Observation, Leicester, UK
3Earth Observation Science, University of Leicester, Leicester, UK
Abstract. This paper describes the global height-resolved methane (CH4) retrieval scheme for the Infrared Atmospheric Sounding Interferometer (IASI) on MetOp, developed at the Rutherford Appleton Laboratory (RAL). The scheme precisely fits measured spectra in the 7.9 micron region to allow information to be retrieved on two independent layers centred in the upper and lower troposphere. It also uses nitrous oxide (N2O) spectral features in the same spectral interval to directly retrieve effective cloud parameters to mitigate errors in retrieved methane due to residual cloud and other geophysical variables. The scheme has been applied to analyse IASI measurements between 2007 and 2015. Results are compared to model fields from the MACC greenhouse gas inversion and independent measurements from satellite (GOSAT), airborne (HIPPO) and ground (TCCON) sensors. The estimated error on methane mixing ratio in the lower- and upper-tropospheric layers ranges from 20 to 100 and from 30 to 40 ppbv, respectively, and error on the derived column-average ranges from 20 to 40 ppbv. Vertical sensitivity extends through the lower troposphere, though it decreases near to the surface. Systematic differences with the other datasets are typically  < 10 ppbv regionally and  < 5 ppbv globally. In the Southern Hemisphere, a bias of around 20 ppbv is found with respect to MACC, which is not explained by vertical sensitivity or found in comparison of IASI to TCCON. Comparisons to HIPPO and MACC support the assertion that two layers can be independently retrieved and provide confirmation that the estimated random errors on the column- and layer-averaged amounts are realistic. The data have been made publically available via the Centre for Environmental Data Analysis (CEDA) data archive (Siddans, 2016).

Citation: Siddans, R., Knappett, D., Kerridge, B., Waterfall, A., Hurley, J., Latter, B., Boesch, H., and Parker, R.: Global height-resolved methane retrievals from the Infrared Atmospheric Sounding Interferometer (IASI) on MetOp, Atmos. Meas. Tech., 10, 4135-4164, https://doi.org/10.5194/amt-10-4135-2017, 2017.
Publications Copernicus
Download
Short summary
This paper describes an algorithm to infer the global atmospheric distribution of the greenhouse gas methane, from measurements made by the infrared, nadir-viewing spectrometer IASI, on board the MetOp polar orbiting satellites. The algorithm has been applied to 9 years of data. Results are presented and validated by comparison to independent measurements.
This paper describes an algorithm to infer the global atmospheric distribution of the greenhouse...
Share