Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 10, issue 12 | Copyright
Atmos. Meas. Tech., 10, 4613-4621, 2017
https://doi.org/10.5194/amt-10-4613-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 01 Dec 2017

Research article | 01 Dec 2017

Validation of spectroscopic gas analyzer accuracy using gravimetric standard gas mixtures: impact of background gas composition on CO2 quantitation by cavity ring-down spectroscopy

Jeong Sik Lim et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Anna Mirena Feist-Polner on behalf of the Authors (24 Aug 2017)  Author's response
ED: Publish as is (16 Sep 2017) by Christian Brümmer
Publications Copernicus
Download
Short summary
Effect of background gas composition on the spectroscopic measurement of CO2 concentration at ambient levels has been investigated. The wavelength-scanned cavity ring-down spectroscopy was employed to explore the spectral line shape of CO2 at 1603 nm. It is revealed that the instrument response should be corrected with respect to a total pressure broadening coefficient given by a matrix composition. The correction method is validated by high accurate gravimetric standard gas mixture.
Effect of background gas composition on the spectroscopic measurement of CO2 concentration at...
Citation
Share