Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 10, issue 12
Atmos. Meas. Tech., 10, 4639-4657, 2017
https://doi.org/10.5194/amt-10-4639-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 10, 4639-4657, 2017
https://doi.org/10.5194/amt-10-4639-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 01 Dec 2017

Research article | 01 Dec 2017

Using depolarization to quantify ice nucleating particle concentrations: a new method

Jake Zenker et al.
Related authors  
The Fifth International Workshop on Ice Nucleation phase 2 (FIN-02): laboratory intercomparison of ice nucleation measurements
Paul J. DeMott, Ottmar Möhler, Daniel J. Cziczo, Naruki Hiranuma, Markus D. Petters, Sarah S. Petters, Franco Belosi, Heinz G. Bingemer, Sarah D. Brooks, Carsten Budke, Monika Burkert-Kohn, Kristen N. Collier, Anja Danielczok, Oliver Eppers, Laura Felgitsch, Sarvesh Garimella, Hinrich Grothe, Paul Herenz, Thomas C. J. Hill, Kristina Höhler, Zamin A. Kanji, Alexei Kiselev, Thomas Koop, Thomas B. Kristensen, Konstantin Krüger, Gourihar Kulkarni, Ezra J. T. Levin, Benjamin J. Murray, Alessia Nicosia, Daniel O'Sullivan, Andreas Peckhaus, Michael J. Polen, Hannah C. Price, Naama Reicher, Daniel A. Rothenberg, Yinon Rudich, Gianni Santachiara, Thea Schiebel, Jann Schrod, Teresa M. Seifried, Frank Stratmann, Ryan C. Sullivan, Kaitlyn J. Suski, Miklós Szakáll, Hans P. Taylor, Romy Ullrich, Jesus Vergara-Temprado, Robert Wagner, Thomas F. Whale, Daniel Weber, André Welti, Theodore W. Wilson, Martin J. Wolf, and Jake Zenker
Atmos. Meas. Tech., 11, 6231-6257, https://doi.org/10.5194/amt-11-6231-2018,https://doi.org/10.5194/amt-11-6231-2018, 2018
Short summary
Related subject area  
Subject: Aerosols | Technique: Laboratory Measurement | Topic: Data Processing and Information Retrieval
Particle wall-loss correction methods in smog chamber experiments
Ningxin Wang, Spiro D. Jorga, Jeffery R. Pierce, Neil M. Donahue, and Spyros N. Pandis
Atmos. Meas. Tech., 11, 6577-6588, https://doi.org/10.5194/amt-11-6577-2018,https://doi.org/10.5194/amt-11-6577-2018, 2018
Short summary
Improved real-time bio-aerosol classification using artificial neural networks
Maciej Leśkiewicz, Miron Kaliszewski, Maksymilian Włodarski, Jarosław Młyńczak, Zygmunt Mierczyk, and Krzysztof Kopczyński
Atmos. Meas. Tech., 11, 6259-6270, https://doi.org/10.5194/amt-11-6259-2018,https://doi.org/10.5194/amt-11-6259-2018, 2018
Short summary
Machine learning for improved data analysis of biological aerosol using the WIBS
Simon Ruske, David O. Topping, Virginia E. Foot, Andrew P. Morse, and Martin W. Gallagher
Atmos. Meas. Tech., 11, 6203-6230, https://doi.org/10.5194/amt-11-6203-2018,https://doi.org/10.5194/amt-11-6203-2018, 2018
Short summary
A machine learning approach to aerosol classification for single-particle mass spectrometry
Costa D. Christopoulos, Sarvesh Garimella, Maria A. Zawadowicz, Ottmar Möhler, and Daniel J. Cziczo
Atmos. Meas. Tech., 11, 5687-5699, https://doi.org/10.5194/amt-11-5687-2018,https://doi.org/10.5194/amt-11-5687-2018, 2018
Short summary
Evaluation of a hierarchical agglomerative clustering method applied to WIBS laboratory data for improved discrimination of biological particles by comparing data preparation techniques
Nicole J. Savage and J. Alex Huffman
Atmos. Meas. Tech., 11, 4929-4942, https://doi.org/10.5194/amt-11-4929-2018,https://doi.org/10.5194/amt-11-4929-2018, 2018
Short summary
Cited articles  
Amato, P., Joly, M., Schaupp, C., Attard, E., Möhler, O., Morris, C. E., Brunet, Y., and Delort, A.-M.: Survival and ice nucleation activity of bacteria as aerosols in a cloud simulation chamber, Atmos. Chem. Phys., 15, 6455–6465, https://doi.org/10.5194/acp-15-6455-2015, 2015.
Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Whale, T. F., Baustian, K. J., Carslaw K. S., Dobbie S., O'Sullivan, D., and Malkin, T. L.: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds, Nature, 498, 355–358, 2013.
Bailey, M. P. and Hallett, J.: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies, J. Atmos. Sci., 66, 2888–2899, 2009.
Bi, L. and Yang, P.: Accurate simulation of the optical properties of atmospheric ice crystals with the invariant imbedding T-matrix method, J. Quant. Spectrosc. Ra., 138, 17–35, 2014.
Bi, L., Yang, P., Kattawar, G. W., and Mishchenko, M. I.: Efficient implementation of the invariant imbedding T-matrix method and the separation of variables method applied to large nonspherical inhomogeneous particles, J. Quant. Spectrosc. Ra., 116, 169–183, 2013.
Publications Copernicus
Download
Short summary
We have developed a new method which employs single particle depolarization to determine ice nucleating particle (INP) concentrations and to differentiate between ice crystals, water droplets, and aerosols. The method is used to interpret measurements collected using the Texas A&M Continuous Flow Diffusion Chamber (TAMU CFDC) coupled to a Cloud and Aerosol Spectrometer with Polarization (CASPOL). This new method extends the range of operating conditions for the CFDC to higher supersaturations.
We have developed a new method which employs single particle depolarization to determine ice...
Citation
Share