Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 10, issue 12
Atmos. Meas. Tech., 10, 4747-4759, 2017
https://doi.org/10.5194/amt-10-4747-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 10, 4747-4759, 2017
https://doi.org/10.5194/amt-10-4747-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 05 Dec 2017

Research article | 05 Dec 2017

Feasibility study of multi-pixel retrieval of optical thickness and droplet effective radius of inhomogeneous clouds using deep learning

Rintaro Okamura et al.
Related authors  
Simulation of the transport, vertical distribution, optical properties and radiative impact of smoke aerosols with the ALADIN regional climate model during the ORACLES-2016 and LASIC experiments
Marc Mallet, Pierre Nabat, Paquita Zuidema, Jens Redemann, Andrew Mark Sayer, Martin Stengel, Sebastian Schmidt, Sabrina Cochrane, Sharon Burton, Richard Ferrare, Kerry Meyer, Pablo Saide, Hiren Jethva, Omar Torres, Robert Wood, David Saint Martin, Romain Roehrig, Christina Hsu, and Paola Formenti
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1218,https://doi.org/10.5194/acp-2018-1218, 2018
Manuscript under review for ACP
Short summary
The spectral signature of cloud spatial structure in shortwave irradiance
Shi Song, K. Sebastian Schmidt, Peter Pilewskie, Michael D. King, Andrew K. Heidinger, Andi Walther, Hironobu Iwabuchi, Gala Wind, and Odele M. Coddington
Atmos. Chem. Phys., 16, 13791-13806, https://doi.org/10.5194/acp-16-13791-2016,https://doi.org/10.5194/acp-16-13791-2016, 2016
Short summary
A new method of measuring aerosol optical properties from digital twilight photographs
M. Saito and H. Iwabuchi
Atmos. Meas. Tech., 8, 4295-4311, https://doi.org/10.5194/amt-8-4295-2015,https://doi.org/10.5194/amt-8-4295-2015, 2015
Short summary
Upper-troposphere and lower-stratosphere water vapor retrievals from the 1400 and 1900 nm water vapor bands
B. C. Kindel, P. Pilewskie, K. S. Schmidt, T. Thornberry, A. Rollins, and T. Bui
Atmos. Meas. Tech., 8, 1147-1156, https://doi.org/10.5194/amt-8-1147-2015,https://doi.org/10.5194/amt-8-1147-2015, 2015
Short summary
Long-term MAX-DOAS network observations of NO2 in Russia and Asia (MADRAS) during the period 2007–2012: instrumentation, elucidation of climatology, and comparisons with OMI satellite observations and global model simulations
Y. Kanaya, H. Irie, H. Takashima, H. Iwabuchi, H. Akimoto, K. Sudo, M. Gu, J. Chong, Y. J. Kim, H. Lee, A. Li, F. Si, J. Xu, P.-H. Xie, W.-Q. Liu, A. Dzhola, O. Postylyakov, V. Ivanov, E. Grechko, S. Terpugova, and M. Panchenko
Atmos. Chem. Phys., 14, 7909-7927, https://doi.org/10.5194/acp-14-7909-2014,https://doi.org/10.5194/acp-14-7909-2014, 2014
Related subject area  
Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
CALIPSO lidar calibration at 532 nm: version 4 daytime algorithm
Brian J. Getzewich, Mark A. Vaughan, William H. Hunt, Melody A. Avery, Kathleen A. Powell, Jason L. Tackett, David M. Winker, Jayanta Kar, Kam-Pui Lee, and Travis D. Toth
Atmos. Meas. Tech., 11, 6309-6326, https://doi.org/10.5194/amt-11-6309-2018,https://doi.org/10.5194/amt-11-6309-2018, 2018
Short summary
The MIPAS/Envisat climatology (2002–2012) of polar stratospheric cloud volume density profiles
Michael Höpfner, Terry Deshler, Michael Pitts, Lamont Poole, Reinhold Spang, Gabriele Stiller, and Thomas von Clarmann
Atmos. Meas. Tech., 11, 5901-5923, https://doi.org/10.5194/amt-11-5901-2018,https://doi.org/10.5194/amt-11-5901-2018, 2018
Short summary
Extinction and optical depth retrievals for CALIPSO's Version 4 data release
Stuart A. Young, Mark A. Vaughan, Anne Garnier, Jason L. Tackett, James D. Lambeth, and Kathleen A. Powell
Atmos. Meas. Tech., 11, 5701-5727, https://doi.org/10.5194/amt-11-5701-2018,https://doi.org/10.5194/amt-11-5701-2018, 2018
Short summary
First fully diurnal fog and low cloud satellite detection reveals life cycle in the Namib
Hendrik Andersen and Jan Cermak
Atmos. Meas. Tech., 11, 5461-5470, https://doi.org/10.5194/amt-11-5461-2018,https://doi.org/10.5194/amt-11-5461-2018, 2018
Short summary
Cloud classification of ground-based infrared images combining manifold and texture features
Qixiang Luo, Yong Meng, Lei Liu, Xiaofeng Zhao, and Zeming Zhou
Atmos. Meas. Tech., 11, 5351-5361, https://doi.org/10.5194/amt-11-5351-2018,https://doi.org/10.5194/amt-11-5351-2018, 2018
Short summary
Cited articles  
Bohren, C. F. and Huffman, D. R.: Absorption and scattering of light by small particles, Wiley, New York, 1983.
Cornet, C., Isaka, H., Guillemet, B., and Szczap, F.: Neural network retrieval of cloud parameters of inhomogeneous clouds from multispectral and multiscale radiance data: Feasibility study, J. Geophys. Res.-Atmos., 109, D12203, https://doi.org/10.1029/2003JD004186, 2004.
Cornet, C., Buriez, J.-C., Riédi, J., Isaka, H., and Guillemet, B.: Case study of inhomogeneous cloud parameter retrieval from MODIS data, Geophys. Res. Lett., 32, L13807, https://doi.org/10.1029/2005GL022791, 2005.
Evans, K. F., Marshak, A., and Várnai, T.: The potential for improved boundary layer cloud optical depth retrievals from the multiple directions of MISR, J. Atmos. Sci., 65, 3179–3196, 2008.
Faure, T., Isaka, H., and Guillemet, B.: Neural network retrieval of cloud parameters of inhomogeneous and fractional clouds: Feasibility study, Remote Sens. Environ., 77, 123–138, https://doi.org/10.1016/S0034-4257(01)00199-7, 2001.
Publications Copernicus
Download
Short summary
Three-dimensional (3-D) radiative transfer effects are a major source of retrieval errors in satellite-based optical remote sensing of clouds. Multi-pixel, multispectral approaches based on deep learning are proposed for retrieval of cloud optical thickness and droplet effective radius. A feasibility test shows that proposed retrieval methods are effective to obtain accurate cloud properties. Use of the convolutional neural network is effective to reduce 3-D radiative transfer effects.
Three-dimensional (3-D) radiative transfer effects are a major source of retrieval errors in...
Citation
Share