Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 10, issue 12 | Copyright
Atmos. Meas. Tech., 10, 4747-4759, 2017
https://doi.org/10.5194/amt-10-4747-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 05 Dec 2017

Research article | 05 Dec 2017

Feasibility study of multi-pixel retrieval of optical thickness and droplet effective radius of inhomogeneous clouds using deep learning

Rintaro Okamura et al.
Related authors
The spectral signature of cloud spatial structure in shortwave irradiance
Shi Song, K. Sebastian Schmidt, Peter Pilewskie, Michael D. King, Andrew K. Heidinger, Andi Walther, Hironobu Iwabuchi, Gala Wind, and Odele M. Coddington
Atmos. Chem. Phys., 16, 13791-13806, https://doi.org/10.5194/acp-16-13791-2016,https://doi.org/10.5194/acp-16-13791-2016, 2016
A new method of measuring aerosol optical properties from digital twilight photographs
M. Saito and H. Iwabuchi
Atmos. Meas. Tech., 8, 4295-4311, https://doi.org/10.5194/amt-8-4295-2015,https://doi.org/10.5194/amt-8-4295-2015, 2015
Upper-troposphere and lower-stratosphere water vapor retrievals from the 1400 and 1900 nm water vapor bands
B. C. Kindel, P. Pilewskie, K. S. Schmidt, T. Thornberry, A. Rollins, and T. Bui
Atmos. Meas. Tech., 8, 1147-1156, https://doi.org/10.5194/amt-8-1147-2015,https://doi.org/10.5194/amt-8-1147-2015, 2015
Long-term MAX-DOAS network observations of NO2 in Russia and Asia (MADRAS) during the period 2007–2012: instrumentation, elucidation of climatology, and comparisons with OMI satellite observations and global model simulations
Y. Kanaya, H. Irie, H. Takashima, H. Iwabuchi, H. Akimoto, K. Sudo, M. Gu, J. Chong, Y. J. Kim, H. Lee, A. Li, F. Si, J. Xu, P.-H. Xie, W.-Q. Liu, A. Dzhola, O. Postylyakov, V. Ivanov, E. Grechko, S. Terpugova, and M. Panchenko
Atmos. Chem. Phys., 14, 7909-7927, https://doi.org/10.5194/acp-14-7909-2014,https://doi.org/10.5194/acp-14-7909-2014, 2014
Related subject area
Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Clutter mitigation, multiple peaks, and high-order spectral moments in 35 GHz vertically pointing radar velocity spectra
Christopher R. Williams, Maximilian Maahn, Joseph C. Hardin, and Gijs de Boer
Atmos. Meas. Tech., 11, 4963-4980, https://doi.org/10.5194/amt-11-4963-2018,https://doi.org/10.5194/amt-11-4963-2018, 2018
A neural network approach to estimating a posteriori distributions of Bayesian retrieval problems
Simon Pfreundschuh, Patrick Eriksson, David Duncan, Bengt Rydberg, Nina Håkansson, and Anke Thoss
Atmos. Meas. Tech., 11, 4627-4643, https://doi.org/10.5194/amt-11-4627-2018,https://doi.org/10.5194/amt-11-4627-2018, 2018
Parameterizing cloud top effective radii from satellite retrieved values, accounting for vertical photon transport: quantification and correction of the resulting bias in droplet concentration and liquid water path retrievals
Daniel P. Grosvenor, Odran Sourdeval, and Robert Wood
Atmos. Meas. Tech., 11, 4273-4289, https://doi.org/10.5194/amt-11-4273-2018,https://doi.org/10.5194/amt-11-4273-2018, 2018
All-sky information content analysis for novel passive microwave instruments in the range from 23.8 to 874.4 GHz
Verena Grützun, Stefan A. Buehler, Lukas Kluft, Jana Mendrok, Manfred Brath, and Patrick Eriksson
Atmos. Meas. Tech., 11, 4217-4237, https://doi.org/10.5194/amt-11-4217-2018,https://doi.org/10.5194/amt-11-4217-2018, 2018
A cloud algorithm based on the O2-O2 477 nm absorption band featuring an advanced spectral fitting method and the use of surface geometry-dependent Lambertian-equivalent reflectivity
Alexander Vasilkov, Eun-Su Yang, Sergey Marchenko, Wenhan Qin, Lok Lamsal, Joanna Joiner, Nickolay Krotkov, David Haffner, Pawan K. Bhartia, and Robert Spurr
Atmos. Meas. Tech., 11, 4093-4107, https://doi.org/10.5194/amt-11-4093-2018,https://doi.org/10.5194/amt-11-4093-2018, 2018
Cited articles
Bohren, C. F. and Huffman, D. R.: Absorption and scattering of light by small particles, Wiley, New York, 1983.
Cornet, C., Isaka, H., Guillemet, B., and Szczap, F.: Neural network retrieval of cloud parameters of inhomogeneous clouds from multispectral and multiscale radiance data: Feasibility study, J. Geophys. Res.-Atmos., 109, D12203, https://doi.org/10.1029/2003JD004186, 2004.
Cornet, C., Buriez, J.-C., Riédi, J., Isaka, H., and Guillemet, B.: Case study of inhomogeneous cloud parameter retrieval from MODIS data, Geophys. Res. Lett., 32, L13807, https://doi.org/10.1029/2005GL022791, 2005.
Evans, K. F., Marshak, A., and Várnai, T.: The potential for improved boundary layer cloud optical depth retrievals from the multiple directions of MISR, J. Atmos. Sci., 65, 3179–3196, 2008.
Faure, T., Isaka, H., and Guillemet, B.: Neural network retrieval of cloud parameters of inhomogeneous and fractional clouds: Feasibility study, Remote Sens. Environ., 77, 123–138, https://doi.org/10.1016/S0034-4257(01)00199-7, 2001.
Publications Copernicus
Download
Short summary
Three-dimensional (3-D) radiative transfer effects are a major source of retrieval errors in satellite-based optical remote sensing of clouds. Multi-pixel, multispectral approaches based on deep learning are proposed for retrieval of cloud optical thickness and droplet effective radius. A feasibility test shows that proposed retrieval methods are effective to obtain accurate cloud properties. Use of the convolutional neural network is effective to reduce 3-D radiative transfer effects.
Three-dimensional (3-D) radiative transfer effects are a major source of retrieval errors in...
Citation
Share