Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.089 IF 3.089
  • IF 5-year<br/> value: 3.700 IF 5-year
    3.700
  • CiteScore<br/> value: 3.59 CiteScore
    3.59
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
Atmos. Meas. Tech., 10, 4761-4776, 2017
https://doi.org/10.5194/amt-10-4761-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
08 Dec 2017
Correcting negatively biased refractivity below ducts in GNSS radio occultation: an optimal estimation approach towards improving planetary boundary layer (PBL) characterization
Kuo-Nung Wang et al.

Viewed

Total article views: 625 (including HTML, PDF, and XML)

HTML PDF XML Total BibTeX EndNote
449 149 27 625 21 32

Views and downloads (calculated since 21 Apr 2017)

Cumulative views and downloads (calculated since 21 Apr 2017)

Viewed (geographical distribution)

Total article views: 623 (including HTML, PDF, and XML)

Thereof 620 with geography defined and 3 with unknown origin.

Country # Views %
  • 1

Cited

Saved (final revised paper)

Saved (discussion paper)

Discussed (final revised paper)

Discussed (discussion paper)

Latest update: 20 Jun 2018
Publications Copernicus
Download
Short summary
Refractivity retrievals from GNSS radio occultation (RO) are known to be negatively biased within the planetary boundary layer (PBL). We propose an optimization-based reconstruction method in this paper to correct the negative bias with external measurements of precipitable water (PW). Our results show that the proposed method can greatly reduce the bias and better characterize the PBL.
Refractivity retrievals from GNSS radio occultation (RO) are known to be negatively biased...
Share