Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 10, issue 12 | Copyright
Atmos. Meas. Tech., 10, 4777-4803, 2017
https://doi.org/10.5194/amt-10-4777-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 11 Dec 2017

Research article | 11 Dec 2017

Simultaneous and synergistic profiling of cloud and drizzle properties using ground-based observations

Stephanie P. Rusli1,2, David P. Donovan2, and Herman W. J. Russchenberg1 Stephanie P. Rusli et al.
  • 1Department of Geoscience and Remote Sensing, Faculty of Civil Engineering and Geosciences, TU Delft, Delft, the Netherlands
  • 2Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands

Abstract. Despite the importance of radar reflectivity (Z) measurements in the retrieval of liquid water cloud properties, it remains nontrivial to interpret Z due to the possible presence of drizzle droplets within the clouds. So far, there has been no published work that utilizes Z to identify the presence of drizzle above the cloud base in an optimized and a physically consistent manner. In this work, we develop a retrieval technique that exploits the synergy of different remote sensing systems to carry out this task and to subsequently profile the microphysical properties of the cloud and drizzle in a unified framework. This is accomplished by using ground-based measurements of Z, lidar attenuated backscatter below as well as above the cloud base, and microwave brightness temperatures. Fast physical forward models coupled to cloud and drizzle structure parameterization are used in an optimal-estimation-type framework in order to retrieve the best estimate for the cloud and drizzle property profiles. The cloud retrieval is first evaluated using synthetic signals generated from large-eddy simulation (LES) output to verify the forward models used in the retrieval procedure and the vertical parameterization of the liquid water content (LWC). From this exercise it is found that, on average, the cloud properties can be retrieved within 5% of the mean truth. The full cloud–drizzle retrieval method is then applied to a selected ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) campaign dataset collected in Cabauw, the Netherlands. An assessment of the retrieval products is performed using three independent methods from the literature; each was specifically developed to retrieve only the cloud properties, the drizzle properties below the cloud base, or the drizzle fraction within the cloud. One-to-one comparisons, taking into account the uncertainties or limitations of each retrieval, show that our results are consistent with what is derived using the three independent methods.

Download & links
Publications Copernicus
Download
Short summary
A retrieval method exploiting a synergy of radar, lidar, and microwave radiometer measurements is developed to simultaneously derive microphysical properties of cloud and drizzle in a physically consistent way. After successful tests with simulated scenes, this technique is applied to data collected in Cabauw, the Netherlands. Evaluation of the results shows that the retrieved cloud and drizzle properties are consistent with what is derived from multiple independent retrieval methods.
A retrieval method exploiting a synergy of radar, lidar, and microwave radiometer measurements...
Citation
Share