Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 10, issue 12 | Copyright
Atmos. Meas. Tech., 10, 4777-4803, 2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 11 Dec 2017

Research article | 11 Dec 2017

Simultaneous and synergistic profiling of cloud and drizzle properties using ground-based observations

Stephanie P. Rusli et al.
Related authors
Observing ice particle growth along fall streaks in mixed-phase clouds using spectral polarimetric radar data
Lukas Pfitzenmaier, Christine M. H. Unal, Yann Dufournet, and Herman W. J. Russchenberg
Atmos. Chem. Phys., 18, 7843-7862,,, 2018
Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events
Dimitra Mamali, Eleni Marinou, Jean Sciare, Michael Pikridas, Panagiotis Kokkalis, Michael Kottas, Ioannis Binietoglou, Alexandra Tsekeri, Christos Keleshis, Ronny Engelmann, Holger Baars, Albert Ansmann, Vassilis Amiridis, Herman Russchenberg, and George Biskos
Atmos. Meas. Tech., 11, 2897-2910,,, 2018
Monitoring aerosol–cloud interactions at the CESAR Observatory in the Netherlands
Karolina Sarna and Herman W. J. Russchenberg
Atmos. Meas. Tech., 10, 1987-1997,,, 2017
Pathfinder: applying graph theory to consistent tracking of daytime mixed layer height with backscatter lidar
Marco de Bruine, Arnoud Apituley, David Patrick Donovan, Hendrik Klein Baltink, and Marijn Jorrit de Haij
Atmos. Meas. Tech., 10, 1893-1909,,, 2017
Ground-based remote sensing scheme for monitoring aerosol–cloud interactions
Karolina Sarna and Herman W. J. Russchenberg
Atmos. Meas. Tech., 9, 1039-1050,,, 2016
Related subject area
Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Clutter mitigation, multiple peaks, and high-order spectral moments in 35 GHz vertically pointing radar velocity spectra
Christopher R. Williams, Maximilian Maahn, Joseph C. Hardin, and Gijs de Boer
Atmos. Meas. Tech., 11, 4963-4980,,, 2018
A neural network approach to estimating a posteriori distributions of Bayesian retrieval problems
Simon Pfreundschuh, Patrick Eriksson, David Duncan, Bengt Rydberg, Nina Håkansson, and Anke Thoss
Atmos. Meas. Tech., 11, 4627-4643,,, 2018
Parameterizing cloud top effective radii from satellite retrieved values, accounting for vertical photon transport: quantification and correction of the resulting bias in droplet concentration and liquid water path retrievals
Daniel P. Grosvenor, Odran Sourdeval, and Robert Wood
Atmos. Meas. Tech., 11, 4273-4289,,, 2018
All-sky information content analysis for novel passive microwave instruments in the range from 23.8 to 874.4 GHz
Verena Grützun, Stefan A. Buehler, Lukas Kluft, Jana Mendrok, Manfred Brath, and Patrick Eriksson
Atmos. Meas. Tech., 11, 4217-4237,,, 2018
A cloud algorithm based on the O2-O2 477 nm absorption band featuring an advanced spectral fitting method and the use of surface geometry-dependent Lambertian-equivalent reflectivity
Alexander Vasilkov, Eun-Su Yang, Sergey Marchenko, Wenhan Qin, Lok Lamsal, Joanna Joiner, Nickolay Krotkov, David Haffner, Pawan K. Bhartia, and Robert Spurr
Atmos. Meas. Tech., 11, 4093-4107,,, 2018
Cited articles
Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227–1230,, 1989.
Austin, R. T. and Stephens, G. L.: Retrieval of stratus cloud microphysical parameters using millimeter-wave radar and visible optical depth in preparation for CloudSat: 1. Algorithm formulation, J. Geophys. Res., 106, 28233–28242,, 2001.
Baedi, R., Boers, R., and Russchenberg, H.: Detection of Boundary Layer Water Clouds by Spaceborne Cloud Radar, J. Atmos. Ocean. Tech., 19, 1915–1927,<1915:DOBLWC>2.0.CO;2, 2002.
Benmoshe, N., Pinsky, M., Pokrovsky, A., and Khain, A.: Turbulent effects on the microphysics and initiation of warm rain in deep convective clouds: 2-D simulations by a spectral mixed-phase microphysics cloud model, J. Geophys. Res.-Atmos., 117, D06220,, 2012.
Boers, R., Jensen, J. B., and Krummel, P. B.: Microphysical and short-wave radiative structure of stratocumulus clouds over the Southern Ocean: Summer results and seasonal differences, Q. J. Roy. Meteor. Soc., 124, 151–168,, 1998.
Publications Copernicus
Short summary
A retrieval method exploiting a synergy of radar, lidar, and microwave radiometer measurements is developed to simultaneously derive microphysical properties of cloud and drizzle in a physically consistent way. After successful tests with simulated scenes, this technique is applied to data collected in Cabauw, the Netherlands. Evaluation of the results shows that the retrieved cloud and drizzle properties are consistent with what is derived from multiple independent retrieval methods.
A retrieval method exploiting a synergy of radar, lidar, and microwave radiometer measurements...