Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.089 IF 3.089
  • IF 5-year<br/> value: 3.700 IF 5-year
    3.700
  • CiteScore<br/> value: 3.59 CiteScore
    3.59
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
Atmos. Meas. Tech., 10, 4833-4844, 2017
https://doi.org/10.5194/amt-10-4833-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.
Research article
12 Dec 2017
A new non-resonant laser-induced fluorescence instrument for the airborne in situ measurement of formaldehyde
Jason M. St. Clair et al.

Viewed

Total article views: 632 (including HTML, PDF, and XML)

HTML PDF XML Total Supplement BibTeX EndNote
437 184 11 632 53 14 27

Views and downloads (calculated since 04 Aug 2017)

Cumulative views and downloads (calculated since 04 Aug 2017)

Viewed (geographical distribution)

Total article views: 632 (including HTML, PDF, and XML)

Thereof 622 with geography defined and 10 with unknown origin.

Country # Views %
  • 1

Cited

Saved (final revised paper)

Saved (discussion paper)

Discussed (final revised paper)

Discussed (discussion paper)

Latest update: 19 Jun 2018
Publications Copernicus
Download
Short summary
Formaldehyde is an abundant, photochemically influential trace species in the Earth’s atmosphere. We present a new instrument for measuring atmospheric formaldehyde using a laser-based measurement technique that is more compact and lower cost than previous laser-based formaldehyde instruments. The instrument is part of the Alpha Jet Atmospheric eXperiment (AJAX) payload at the NASA Ames Research Center and has collected data on 27 flights between December 2015 and March 2017.
Formaldehyde is an abundant, photochemically influential trace species in the Earth’s...
Share