Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 10, issue 12 | Copyright
Atmos. Meas. Tech., 10, 4865-4876, 2017
https://doi.org/10.5194/amt-10-4865-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 13 Dec 2017

Research article | 13 Dec 2017

A technique for the measurement of organic aerosol hygroscopicity, oxidation level, and volatility distributions

Kerrigan P. Cain1 and Spyros N. Pandis1,2,3 Kerrigan P. Cain and Spyros N. Pandis
  • 1Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, USA
  • 2Institute of Chemical Engineering Sciences, ICE-HT, Patras, Greece
  • 3Department of Chemical Engineering, University of Patras, Patras, Greece

Abstract. Hygroscopicity, oxidation level, and volatility are three crucial properties of organic pollutants. This study assesses the feasibility of a novel measurement and analysis technique to determine these properties and establish their relationship. The proposed experimental setup utilizes a cloud condensation nuclei (CCN) counter to quantify hygroscopic activity, an aerosol mass spectrometer to measure the oxidation level, and a thermodenuder to evaluate the volatility. The setup was first tested with secondary organic aerosol (SOA) formed from the ozonolysis of α-pinene. The results of the first experiments indicated that, for this system, the less volatile SOA contained species that had on average lower O:C ratios and hygroscopicities. In this SOA system, both low- and high-volatility components can have comparable oxidation levels and hygroscopicities. The method developed here can be used to provide valuable insights about the relationships among organic aerosol hygroscopicity, oxidation level, and volatility.

Download & links
Publications Copernicus
Download
Short summary
Hygroscopicity, oxidation level, and volatility of organic pollutants are three crucial properties that determine their fate in the atmosphere. This study assesses the feasibility of a novel measurement and analysis technique to determine these properties of organic aerosol components at the same time and to establish their relationship.
Hygroscopicity, oxidation level, and volatility of organic pollutants are three crucial...
Citation
Share