Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 10, issue 12 | Copyright
Atmos. Meas. Tech., 10, 4865-4876, 2017
https://doi.org/10.5194/amt-10-4865-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 13 Dec 2017

Research article | 13 Dec 2017

A technique for the measurement of organic aerosol hygroscopicity, oxidation level, and volatility distributions

Kerrigan P. Cain and Spyros N. Pandis
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Spyros Pandis on behalf of the Authors (03 Nov 2017)  Author's response    Manuscript
ED: Publish as is (06 Nov 2017) by Pierre Herckes
Publications Copernicus
Download
Short summary
Hygroscopicity, oxidation level, and volatility of organic pollutants are three crucial properties that determine their fate in the atmosphere. This study assesses the feasibility of a novel measurement and analysis technique to determine these properties of organic aerosol components at the same time and to establish their relationship.
Hygroscopicity, oxidation level, and volatility of organic pollutants are three crucial...
Citation
Share