Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 10, issue 12 | Copyright
Atmos. Meas. Tech., 10, 4895-4903, 2017
https://doi.org/10.5194/amt-10-4895-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 14 Dec 2017

Research article | 14 Dec 2017

Variability of the Brunt–Väisälä frequency at the OH* layer height

Sabine Wüst et al.
Related authors
Derivation of gravity wave intrinsic parameters and vertical wavelength using a single scanning OH(3-1) airglow spectrometer
Sabine Wüst, Thomas Offenwanger, Carsten Schmidt, Michael Bittner, Christoph Jacobi, Gunter Stober, Jeng-Hwa Yee, Martin G. Mlynczak, and James M. Russell III
Atmos. Meas. Tech., 11, 2937-2947, https://doi.org/10.5194/amt-11-2937-2018,https://doi.org/10.5194/amt-11-2937-2018, 2018
Smoothing data series by means of cubic splines: quality of approximation and introduction of a repeating spline approach
Sabine Wüst, Verena Wendt, Ricarda Linz, and Michael Bittner
Atmos. Meas. Tech., 10, 3453-3462, https://doi.org/10.5194/amt-10-3453-2017,https://doi.org/10.5194/amt-10-3453-2017, 2017
High-resolution observations of small-scale gravity waves and turbulence features in the OH airglow layer
René Sedlak, Patrick Hannawald, Carsten Schmidt, Sabine Wüst, and Michael Bittner
Atmos. Meas. Tech., 9, 5955-5963, https://doi.org/10.5194/amt-9-5955-2016,https://doi.org/10.5194/amt-9-5955-2016, 2016
A fast SWIR imager for observations of transient features in OH airglow
Patrick Hannawald, Carsten Schmidt, Sabine Wüst, and Michael Bittner
Atmos. Meas. Tech., 9, 1461-1472, https://doi.org/10.5194/amt-9-1461-2016,https://doi.org/10.5194/amt-9-1461-2016, 2016
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Characterisation of the melting layer variability in an Alpine valley based on polarimetric X-band radar scans
Floor van den Heuvel, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 11, 5181-5198, https://doi.org/10.5194/amt-11-5181-2018,https://doi.org/10.5194/amt-11-5181-2018, 2018
Graphics algorithm for deriving atmospheric boundary layer heights from CALIPSO data
Boming Liu, Yingying Ma, Jiqiao Liu, Wei Gong, Wei Wang, and Ming Zhang
Atmos. Meas. Tech., 11, 5075-5085, https://doi.org/10.5194/amt-11-5075-2018,https://doi.org/10.5194/amt-11-5075-2018, 2018
Retrieving horizontally resolved wind fields using multi-static meteor radar observations
Gunter Stober, Jorge L. Chau, Juha Vierinen, Christoph Jacobi, and Sven Wilhelm
Atmos. Meas. Tech., 11, 4891-4907, https://doi.org/10.5194/amt-11-4891-2018,https://doi.org/10.5194/amt-11-4891-2018, 2018
Comparison study of COSMIC RO dry-air climatologies based on average profile inversion
Julia Danzer, Marc Schwärz, Veronika Proschek, Ulrich Foelsche, and Hans Gleisner
Atmos. Meas. Tech., 11, 4867-4882, https://doi.org/10.5194/amt-11-4867-2018,https://doi.org/10.5194/amt-11-4867-2018, 2018
Unraveling hydrometeor mixtures in polarimetric radar measurements
Nikola Besic, Josué Gehring, Christophe Praz, Jordi Figueras i Ventura, Jacopo Grazioli, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 11, 4847-4866, https://doi.org/10.5194/amt-11-4847-2018,https://doi.org/10.5194/amt-11-4847-2018, 2018
Cited articles
Andrews, D. G.: An introduction to atmospheric physics, Cambridge University Press, 2000.
Baker, D. J. and Stair Jr., A. T.: Rocket measurements of the altitude distributions of the hydroxyl airglow, Phys. Scr., 37, 611–622, 1988.
Bills, R. E. and Gardner, C. S.: Lidar observations of the mesopause region temperature structure at Urbana, J. Geophys. Res., 98, 1011–1021, https://doi.org/10.1029/92JD02167, 1993.
Bremer, J. and Peters, D.: Influence of stratospheric ozone changes on long-term trends in the meso- and lower thermosphere, J. Atmos. Sol.-Terr. Phys., 70, 1473–1481, 2008.
Publications Copernicus
Download
Short summary
In the Alpine region, the most dense subnetwork of identical NDMC (Network for the Detection of Mesospheric Change) instruments can be found. With these instruments the mesopause temperature is derived each night. The data can be used for the investigation of the amount of energy which is transported by small-scale atmospheric waves, known as gravity waves, provided that the so-called Brunt–Väisälä frequency is known. Information about the variability of this parameter is provided here.
In the Alpine region, the most dense subnetwork of identical NDMC (Network for the Detection of...
Citation
Share