Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.089 IF 3.089
  • IF 5-year<br/> value: 3.700 IF 5-year
    3.700
  • CiteScore<br/> value: 3.59 CiteScore
    3.59
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
Atmos. Meas. Tech., 10, 4947-4964, 2017
https://doi.org/10.5194/amt-10-4947-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.
Research article
19 Dec 2017
Comparison of ozone profiles from DIAL, MLS, and chemical transport model simulations over Río Gallegos, Argentina, during the spring Antarctic vortex breakup, 2009
Takafumi Sugita1, Hideharu Akiyoshi1, Elián Wolfram2,3, Jacobo Salvador2,3,4, Hirofumi Ohyama5,1, and Akira Mizuno5 1National Institute for Environmental Studies (NIES), Tsukuba, Ibaraki, Japan
2Laser Application Research Center (CEILAP)–UNIDEF (MINDEF-CONICET), UMI-IFAECI–CNRS-3351, Villa Martelli, Argentina
3Universidad Tecnológica Nacional, Facultad Regional Buenos Aires (UTN-FRBA) Medrano 951, Buenos Aires, Argentina
4Universidad Nacional de la Patagonia Austral, Unidad Académica Río Gallegos, and CIT Santa Cruz, Río Gallegos, Argentina
5Institute for Space–Earth Environmental Research (ISEE), Nagoya University, Nagoya, Aichi, Japan
Abstract. This study evaluates the agreement between ozone profiles derived from the ground-based differential absorption lidar (DIAL), satellite-borne Aura Microwave Limb Sounder (MLS), and 3-D chemical transport model (CTM) simulations such as the Model for Interdisciplinary Research on Climate (MIROC-CTM) over the Atmospheric Observatory of Southern Patagonia (Observatorio Atmosférico de la Patagonia Austral, OAPA; 51.6° S, 69.3° W) in Río Gallegos, Argentina, from September to November 2009. In this austral spring, measurements were performed in the vicinity of the polar vortex and inside it on some occasions; they revealed the variability in the potential vorticity (PV) of measured air masses. Comparisons between DIAL and MLS were performed between 6 and 100 hPa with 500 km and 24 h coincidence criteria. The results show a good agreement between DIAL and MLS with mean differences of ±0.1 ppmv (MLS − DIAL, n  =  180) between 6 and 56 hPa. MIROC-CTM also agrees with DIAL, with mean differences of ±0.3 ppmv (MIROC-CTM − DIAL, n  =  23) between 10 and 56 hPa. Both comparisons provide mean differences of 0.5 ppmv (MLS) to 0.8–0.9 ppmv (MIROC-CTM) at the 83–100 hPa levels. DIAL tends to underestimate ozone values at this lower altitude region. Between 6 and 8 hPa, the MIROC-CTM ozone value is 0.4–0.6 ppmv (5–8 %) smaller than those from DIAL. Applying the scaled PV (sPV) criterion for matching pairs in the DIAL–MLS comparison, the variability in the difference decreases 21–47 % between 10 and 56 hPa. However, the mean differences are small for all pressure levels, except 6 hPa. Because ground measurement sites in the Southern Hemisphere (SH) are very sparse at mid- to high latitudes, i.e., 35–60° S, the OAPA site is important for evaluating the bias and long-term stability of satellite instruments. The good performance of this DIAL system will be useful for such purposes in the future.

Citation: Sugita, T., Akiyoshi, H., Wolfram, E., Salvador, J., Ohyama, H., and Mizuno, A.: Comparison of ozone profiles from DIAL, MLS, and chemical transport model simulations over Río Gallegos, Argentina, during the spring Antarctic vortex breakup, 2009, Atmos. Meas. Tech., 10, 4947-4964, https://doi.org/10.5194/amt-10-4947-2017, 2017.
Publications Copernicus
Download
Short summary
We present comparison of ozone profiles from DIAL, MLS, and chemical transport model simulations over Río Gallegos (52° S), Argentina, during the 2009 spring. Measurements were performed in the vicinity of the polar vortex and inside it on some occasions. The results show a good agreement between DIAL and MLS with mean differences of ±0.1 ppmv between 6 hPa and 56 hPa. MIROC-CTM also agrees with DIAL, with mean differences of ±0.3 ppmv between 10 hPa and 56 hPa.
We present comparison of ozone profiles from DIAL, MLS, and chemical transport model simulations...
Share