Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 10, issue 12 | Copyright
Atmos. Meas. Tech., 10, 5039-5062, 2017
https://doi.org/10.5194/amt-10-5039-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 21 Dec 2017

Research article | 21 Dec 2017

On Aethalometer measurement uncertainties and an instrument correction factor for the Arctic

John Backman et al.
Data sets

Time series of aerosol light-absorption coefficients from Aethalometers at six Arctic stations between 2012 and 2014 J. Backman, L. Schmeisser, A. Virkkula, J. A. Ogren, E. Asmi, S. Starkweather, S. Sharma, K. Eleftheriadis, S. Vratolis, T. Uttal, P. Tunved, A. Jefferson, M. Bergin, A. Makshtas, and M. Fiebig https://doi.org/10.21336/gen.1

Publications Copernicus
Download
Short summary
Light absorption by aerosol particles is of climatic importance. A widely used means to measure aerosol light absorption is a filter-based measurement technique. In remote areas, such as the Arctic, filter-based instruments operate close to their detection limit. The study presents how a lower detection limit can be achieved for one such instrument, the Aethalometer. Additionally, the Aethalometer is compared to similar instruments, thus improving measurement inter-comparability in the Arctic.
Light absorption by aerosol particles is of climatic importance. A widely used means to measure...
Citation
Share