Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 10, issue 12
Atmos. Meas. Tech., 10, 5063-5073, 2017
https://doi.org/10.5194/amt-10-5063-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 10, 5063-5073, 2017
https://doi.org/10.5194/amt-10-5063-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 22 Dec 2017

Research article | 22 Dec 2017

Improved methods for signal processing in measurements of mercury by Tekran® 2537A and 2537B instruments

Jesse L. Ambrose
Viewed  
Total article views: 633 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
420 198 15 633 83 13 17
  • HTML: 420
  • PDF: 198
  • XML: 15
  • Total: 633
  • Supplement: 83
  • BibTeX: 13
  • EndNote: 17
Views and downloads (calculated since 15 Aug 2017)
Cumulative views and downloads (calculated since 15 Aug 2017)
Viewed (geographical distribution)  
Total article views: 631 (including HTML, PDF, and XML) Thereof 625 with geography defined and 6 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 12 Dec 2018
Publications Copernicus
Download
Short summary
Scientific understanding of environmental Hg cycling is limited by analytical uncertainties. To better characterize analytical uncertainty associated with Hg measurements made with the Tekran® 2537 instrument, I developed new software-based methods for offline processing of the raw instrumental data. I demonstrate significant uncertainty associated with the Tekran® method. By comparison, my methods improve measurement accuracy and the Hg detection limit by as much as 95 % and 88 %, respectively.
Scientific understanding of environmental Hg cycling is limited by analytical uncertainties. To...
Citation
Share