Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.089 IF 3.089
  • IF 5-year<br/> value: 3.700 IF 5-year
    3.700
  • CiteScore<br/> value: 3.59 CiteScore
    3.59
  • SNIP value: 1.273 SNIP 1.273
  • SJR value: 2.026 SJR 2.026
  • IPP value: 3.082 IPP 3.082
  • h5-index value: 45 h5-index 45
Atmos. Meas. Tech., 10, 709-730, 2017
https://doi.org/10.5194/amt-10-709-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
03 Mar 2017
Algorithms and uncertainties for the determination of multispectral irradiance components and aerosol optical depth from a shipborne rotating shadowband radiometer
Jonas Witthuhn1, Hartwig Deneke1, Andreas Macke1, and Germar Bernhard2 1Leibniz Institute of Tropospheric Research, Remote Sensing, Leipzig, Germany
2Biospherical Instruments Inc., San Diego, CA
Abstract. The 19-channel rotating shadowband radiometer GUVis-3511 built by Biospherical Instruments provides automated shipborne measurements of the direct, diffuse and global spectral irradiance components without a requirement for platform stabilization. Several direct sun products, including spectral direct beam transmittance, aerosol optical depth, Ångström exponent and precipitable water, can be derived from these observations. The individual steps of the data analysis are described, and the different sources of uncertainty are discussed. The total uncertainty of the observed direct beam transmittances is estimated to be about 4 % for most channels within a 95 % confidence interval for shipborne operation. The calibration is identified as the dominating contribution to the total uncertainty. A comparison of direct beam transmittance with those obtained from a Cimel sunphotometer at a land site and a manually operated Microtops II sunphotometer on a ship is presented. Measurements deviate by less than 3 and 4 % on land and on ship, respectively, for most channels and in agreement with our previous uncertainty estimate. These numbers demonstrate that the instrument is well suited for shipborne operation, and the applied methods for motion correction work accurately. Based on spectral direct beam transmittance, aerosol optical depth can be retrieved with an uncertainty of 0.02 for all channels within a 95 % confidence interval. The different methods to account for Rayleigh scattering and gas absorption in our scheme and in the Aerosol Robotic Network processing for Cimel sunphotometers lead to minor deviations. Relying on the cross calibration of the 940 nm water vapor channel with the Cimel sunphotometer, the column amount of precipitable water can be estimated with an uncertainty of ±0.034 cm.

Citation: Witthuhn, J., Deneke, H., Macke, A., and Bernhard, G.: Algorithms and uncertainties for the determination of multispectral irradiance components and aerosol optical depth from a shipborne rotating shadowband radiometer, Atmos. Meas. Tech., 10, 709-730, https://doi.org/10.5194/amt-10-709-2017, 2017.
Publications Copernicus
Download
Short summary
To improve and extend observational capabilities of a shipborne facility, developed within the OCEANET project for long-term investigation of the transfer of energy and material between ocean and atmosphere, a shadowband radiometer was acquired. With this instrument, automated observations of spectral irradiance components and aerosol optical properties are possible on ships. The results show that the radiometer works fine for its purposes and can compete with state of the art sun photometers.
To improve and extend observational capabilities of a shipborne facility, developed within the...
Share