Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.400 IF 3.400
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.71 CiteScore
    3.71
  • SNIP value: 1.472 SNIP 1.472
  • IPP value: 3.57 IPP 3.57
  • SJR value: 1.770 SJR 1.770
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 70 Scimago H
    index 70
  • h5-index value: 49 h5-index 49
Volume 10, issue 3
Atmos. Meas. Tech., 10, 811–824, 2017
https://doi.org/10.5194/amt-10-811-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 10, 811–824, 2017
https://doi.org/10.5194/amt-10-811-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 08 Mar 2017

Research article | 08 Mar 2017

Retrievals of aerosol optical and microphysical properties from Imaging Polar Nephelometer scattering measurements

W. Reed Espinosa et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by William Espinosa on behalf of the Authors (02 Feb 2017)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (03 Feb 2017) by Manfred Wendisch
RR by Anonymous Referee #2 (07 Feb 2017)
ED: Publish as is (07 Feb 2017) by Manfred Wendisch
Publications Copernicus
Download
Short summary
Aerosols, and their interaction with clouds, play a key role in the climate of our planet but many of their properties are poorly understood. We present a new method for estimating the size, shape and optical constants of atmospheric particles from light-scattering measurements made both in the laboratory and aboard an aircraft. This method is shown to have sufficient accuracy to potentially reduce existing uncertainties, particularly in airborne measurements.
Aerosols, and their interaction with clouds, play a key role in the climate of our planet but...
Citation