Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.248 IF 3.248
  • IF 5-year value: 3.650 IF 5-year 3.650
  • CiteScore value: 3.37 CiteScore 3.37
  • SNIP value: 1.253 SNIP 1.253
  • SJR value: 1.869 SJR 1.869
  • IPP value: 3.29 IPP 3.29
  • h5-index value: 47 h5-index 47
  • Scimago H index value: 60 Scimago H index 60
Volume 10, issue 3 | Copyright
Atmos. Meas. Tech., 10, 989-997, 2017
https://doi.org/10.5194/amt-10-989-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 13 Mar 2017

Research article | 13 Mar 2017

Technical note: Sensitivity of instrumental line shape monitoring for the ground-based high-resolution FTIR spectrometer with respect to different optical attenuators

Youwen Sun1,2,*, Mathias Palm3,*, Christine Weinzierl3, Christof Petri3, Justus Notholt3, Yuting Wang3, and Cheng Liu4,2,1 Youwen Sun et al.
  • 1Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 230031 Hefei, China
  • 2Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, 361021 Xiamen, China
  • 3University of Bremen, Institute of Environmental Physics, P.O. Box 330440, 28334 Bremen, Germany
  • 4University of Science and Technology of China, Hefei, 230026, China
  • *These authors contributed equally to this work.

Abstract. The TCCON (Total Carbon Column Observing Network) and most NDACC (Network for Detection of Atmospheric Composition Change) sites assume an ideal ILS (instrumental line shape) for analysis of the spectra. In order to adapt the radiant energy received by the detector, an attenuator or different sizes of field stop can be inserted in the light path. These processes may alter the alignment of a high-resolution FTIR (Fourier transform infrared) spectrometer, and may result in bias due to ILS drift. In this paper, we first investigated the sensitivity of the ILS monitoring with respect to application of different kinds of attenuators for ground-based high-resolution FTIR spectrometers within the TCCON and NDACC networks. Both lamp and sun cell measurements were conducted after the insertion of five different attenuators in front of and behind the interferometer. The ILS characteristics derived from lamp and sun spectra are in good agreement. ILSs deduced from all lamp cell measurements were compared. As a result, the disturbances to the ILS of a high-resolution FTIR spectrometer with respect to the insertion of different attenuators at different positions were quantified. A potential strategy to adapt the incident intensity of a detector was finally deduced.

Publications Copernicus
Download
Short summary
We first design experiments to investigate the sensitivity of ILS (instrumental line shape) monitoring for a high-resolution FTIR spectrometer within the TCCON and NDACC networks with respect to different optical attenuators. The ILS characteristics derived from lamp and sun spectra are in good agreement. A potential strategy to adapt incident intensity of a detector was deduced.
We first design experiments to investigate the sensitivity of ILS (instrumental line shape)...
Citation
Share